Summary of study indication changes in radiation dosages during atrial fibrillation ablations by radiofrequency ablation (A) and single-shot devices (B)
Author . | System/technique . | Year of inclusion . | Fluoroscopy time in min . | KAP change . | KAP in cGycm2 . | eED in mSv . | CXR equivalents . |
---|---|---|---|---|---|---|---|
(A) 3D-mapping system (radiofrequency ablation, point-by-point) | |||||||
Estner et al.47 (doi:10.1093/europace/eul079) | 3D-mapping vs. fluoroscopy only | 2005 | 38.9 | −39% | 5660 | 11.3 | 566 |
Lee et al.48 (doi: 10.1093/europace/euv186) | Contact force vs. non-contact force | 2009–2014 | 9.5 | −70% | 104 | 0.2 | 10 |
Christoph et al.43 (doi:10.1093/europace/euu334) | NFCV vs. conventional 3D-mapping | 2013 | 6.4 | −49% | 3726 | 7.5 | 373 |
Huo et al.49 (doi:10.1016/j.hrthm.2015.05.018) | NFCV vs. conventional 3D-mapping | 2014 | 1.8 | −73% | 652 | 1.3 | 65 |
Sommer et al.50 (doi:10.1093/europace/eux378) | NFCV: last 250 vs. first 250 patients | 2012–2017 | 0.5 | −94% | 152 | 0.3 | 15 |
Khalaph et al.51 (doi: 10.1111/pace.14555) | Visualizable steerable sheath vs. non-visualizable sheath | 2019–2021 | 7.0 | −35% | 507 | 1.0 | 51 |
Knecht et al.52 (doi:10.1093/europace/euv006) | Zero-Fluoro after TSP vs. ‘normal-fluoro’ after TSP | 2014 | 4.2 | −25% | 1320 | 2.6 | 132 |
Lehrmann et al.53 (doi:10.1093/europace/euw334) | Radiation dose over time | 2005 | 53.0 | 4635 | 9.3 | 464 | |
2015 | 5.0 | −96% | 185 | 0.4 | 19 | ||
Voskoboinik et al.54 (doi:/10.1016/j.hrthm.2017.02.014) | Radiation dose over time | 2010 | 30.6 | 9.0 | 450 | ||
2015 (CF PVI only) | 11.4 | −66% | 3.1 | 155 | |||
Bourier et al.42 (doi:10.1093/europace/euv364) | Optimized X-ray programme vs. previous settings | 2014–2015 | 8.6 | −77% | 200 | 0.4 | 20 |
Attanasio et al.45 (doi:10.1111/pace.14205) | Optimized X-ray programme | 2015–2018 | 6.2 | 91 | 0.2 | 9 | |
Schreiber et al.55 (doi:/10.1007/s00399-021-00762-7) | Optimized X-ray programme | 2020 | 9.4 | 128 | 0.3 | 13 | |
(B) Single-shot devices for AF ablation | |||||||
Hoffmann et al.56 (doi:10.1093/europace/euz155) | Cryoballoon vs. RF | 2011–2016 | 23.4 | +39% | 2487 | 5.0 | 249 |
Rubesch-Kütemeyer et al.57 (doi:/10.1007/s10840-019-00564-5) | Cryoballoon over time | 2013 | 11.7 | 1428 | 2.9 | 143 | |
2017 | 5.1 | −57% | 617 | 1.2 | 62 | ||
Reissmann et al.58 (doi:10.1093/europace/eux066) | Cryoballoon optimized vs. standard X-ray programme | 2016 | 10.0 | −82% | 389 | 0.8 | 39 |
Kühne et al.59 (doi: 10.3389/fcvm.2021.664538) | Cryoballoon without PV occlusion testing vs. standard | 2017–2019 | 11.0 | −81% | 368 | 0.7 | 37 |
Rottner et al.60 (doi:/10.3389/fcvm.2022.967341) | Cryoballoon Kodex-EPD version 1.4.6 vs. 1.4.8 | 2019–2021 | 10.9 | −58% | 294 | 0.6 | 29 |
Huang et al.61 (doi:10.1111/jce.14546) | Laserballoon low dose (ICE, 3D-mapping system) vs. standard | 2018–2019 (standard) | 16.9 | 1980 | 4.0 | 198 | |
2018–2019 (low dose) | 1.7 | −91% | 181 | 0.4 | 18 | ||
Magni et al.62 (doi:/10.3389/fcvm.2022.959186) | Pulsed-field ablation | 2021–2022 | 13.5 | 658 | 1.3 | 66 | |
Lemoine et al.63 (doi:/10.1007/s00392-022-02091-2) | Pulsed-field ablation | 2021–2022 | 16.0 | 505 | 1.0 | 51 | |
Bohnen et al.64 (doi/10.1093/europace/euac111) | Pulsed-field ablation | 2021 | 16.0 | 125 | 0.3 | 13 |
Author . | System/technique . | Year of inclusion . | Fluoroscopy time in min . | KAP change . | KAP in cGycm2 . | eED in mSv . | CXR equivalents . |
---|---|---|---|---|---|---|---|
(A) 3D-mapping system (radiofrequency ablation, point-by-point) | |||||||
Estner et al.47 (doi:10.1093/europace/eul079) | 3D-mapping vs. fluoroscopy only | 2005 | 38.9 | −39% | 5660 | 11.3 | 566 |
Lee et al.48 (doi: 10.1093/europace/euv186) | Contact force vs. non-contact force | 2009–2014 | 9.5 | −70% | 104 | 0.2 | 10 |
Christoph et al.43 (doi:10.1093/europace/euu334) | NFCV vs. conventional 3D-mapping | 2013 | 6.4 | −49% | 3726 | 7.5 | 373 |
Huo et al.49 (doi:10.1016/j.hrthm.2015.05.018) | NFCV vs. conventional 3D-mapping | 2014 | 1.8 | −73% | 652 | 1.3 | 65 |
Sommer et al.50 (doi:10.1093/europace/eux378) | NFCV: last 250 vs. first 250 patients | 2012–2017 | 0.5 | −94% | 152 | 0.3 | 15 |
Khalaph et al.51 (doi: 10.1111/pace.14555) | Visualizable steerable sheath vs. non-visualizable sheath | 2019–2021 | 7.0 | −35% | 507 | 1.0 | 51 |
Knecht et al.52 (doi:10.1093/europace/euv006) | Zero-Fluoro after TSP vs. ‘normal-fluoro’ after TSP | 2014 | 4.2 | −25% | 1320 | 2.6 | 132 |
Lehrmann et al.53 (doi:10.1093/europace/euw334) | Radiation dose over time | 2005 | 53.0 | 4635 | 9.3 | 464 | |
2015 | 5.0 | −96% | 185 | 0.4 | 19 | ||
Voskoboinik et al.54 (doi:/10.1016/j.hrthm.2017.02.014) | Radiation dose over time | 2010 | 30.6 | 9.0 | 450 | ||
2015 (CF PVI only) | 11.4 | −66% | 3.1 | 155 | |||
Bourier et al.42 (doi:10.1093/europace/euv364) | Optimized X-ray programme vs. previous settings | 2014–2015 | 8.6 | −77% | 200 | 0.4 | 20 |
Attanasio et al.45 (doi:10.1111/pace.14205) | Optimized X-ray programme | 2015–2018 | 6.2 | 91 | 0.2 | 9 | |
Schreiber et al.55 (doi:/10.1007/s00399-021-00762-7) | Optimized X-ray programme | 2020 | 9.4 | 128 | 0.3 | 13 | |
(B) Single-shot devices for AF ablation | |||||||
Hoffmann et al.56 (doi:10.1093/europace/euz155) | Cryoballoon vs. RF | 2011–2016 | 23.4 | +39% | 2487 | 5.0 | 249 |
Rubesch-Kütemeyer et al.57 (doi:/10.1007/s10840-019-00564-5) | Cryoballoon over time | 2013 | 11.7 | 1428 | 2.9 | 143 | |
2017 | 5.1 | −57% | 617 | 1.2 | 62 | ||
Reissmann et al.58 (doi:10.1093/europace/eux066) | Cryoballoon optimized vs. standard X-ray programme | 2016 | 10.0 | −82% | 389 | 0.8 | 39 |
Kühne et al.59 (doi: 10.3389/fcvm.2021.664538) | Cryoballoon without PV occlusion testing vs. standard | 2017–2019 | 11.0 | −81% | 368 | 0.7 | 37 |
Rottner et al.60 (doi:/10.3389/fcvm.2022.967341) | Cryoballoon Kodex-EPD version 1.4.6 vs. 1.4.8 | 2019–2021 | 10.9 | −58% | 294 | 0.6 | 29 |
Huang et al.61 (doi:10.1111/jce.14546) | Laserballoon low dose (ICE, 3D-mapping system) vs. standard | 2018–2019 (standard) | 16.9 | 1980 | 4.0 | 198 | |
2018–2019 (low dose) | 1.7 | −91% | 181 | 0.4 | 18 | ||
Magni et al.62 (doi:/10.3389/fcvm.2022.959186) | Pulsed-field ablation | 2021–2022 | 13.5 | 658 | 1.3 | 66 | |
Lemoine et al.63 (doi:/10.1007/s00392-022-02091-2) | Pulsed-field ablation | 2021–2022 | 16.0 | 505 | 1.0 | 51 | |
Bohnen et al.64 (doi/10.1093/europace/euac111) | Pulsed-field ablation | 2021 | 16.0 | 125 | 0.3 | 13 |
The table only includes studies that reported kerma area product (KAP). The bold numbers show the reduction of Kerma area product (KAP) by the use of 3 D mapping systems.
CXR, chest X-ray; eED, estimated effective dose; ICE, intracardiac echocardiography; NFCV, non-fluoroscopic catheter visualization; PV, pulmonary vein; RF, radiofrequency; TSP, transseptal puncture.
Summary of study indication changes in radiation dosages during atrial fibrillation ablations by radiofrequency ablation (A) and single-shot devices (B)
Author . | System/technique . | Year of inclusion . | Fluoroscopy time in min . | KAP change . | KAP in cGycm2 . | eED in mSv . | CXR equivalents . |
---|---|---|---|---|---|---|---|
(A) 3D-mapping system (radiofrequency ablation, point-by-point) | |||||||
Estner et al.47 (doi:10.1093/europace/eul079) | 3D-mapping vs. fluoroscopy only | 2005 | 38.9 | −39% | 5660 | 11.3 | 566 |
Lee et al.48 (doi: 10.1093/europace/euv186) | Contact force vs. non-contact force | 2009–2014 | 9.5 | −70% | 104 | 0.2 | 10 |
Christoph et al.43 (doi:10.1093/europace/euu334) | NFCV vs. conventional 3D-mapping | 2013 | 6.4 | −49% | 3726 | 7.5 | 373 |
Huo et al.49 (doi:10.1016/j.hrthm.2015.05.018) | NFCV vs. conventional 3D-mapping | 2014 | 1.8 | −73% | 652 | 1.3 | 65 |
Sommer et al.50 (doi:10.1093/europace/eux378) | NFCV: last 250 vs. first 250 patients | 2012–2017 | 0.5 | −94% | 152 | 0.3 | 15 |
Khalaph et al.51 (doi: 10.1111/pace.14555) | Visualizable steerable sheath vs. non-visualizable sheath | 2019–2021 | 7.0 | −35% | 507 | 1.0 | 51 |
Knecht et al.52 (doi:10.1093/europace/euv006) | Zero-Fluoro after TSP vs. ‘normal-fluoro’ after TSP | 2014 | 4.2 | −25% | 1320 | 2.6 | 132 |
Lehrmann et al.53 (doi:10.1093/europace/euw334) | Radiation dose over time | 2005 | 53.0 | 4635 | 9.3 | 464 | |
2015 | 5.0 | −96% | 185 | 0.4 | 19 | ||
Voskoboinik et al.54 (doi:/10.1016/j.hrthm.2017.02.014) | Radiation dose over time | 2010 | 30.6 | 9.0 | 450 | ||
2015 (CF PVI only) | 11.4 | −66% | 3.1 | 155 | |||
Bourier et al.42 (doi:10.1093/europace/euv364) | Optimized X-ray programme vs. previous settings | 2014–2015 | 8.6 | −77% | 200 | 0.4 | 20 |
Attanasio et al.45 (doi:10.1111/pace.14205) | Optimized X-ray programme | 2015–2018 | 6.2 | 91 | 0.2 | 9 | |
Schreiber et al.55 (doi:/10.1007/s00399-021-00762-7) | Optimized X-ray programme | 2020 | 9.4 | 128 | 0.3 | 13 | |
(B) Single-shot devices for AF ablation | |||||||
Hoffmann et al.56 (doi:10.1093/europace/euz155) | Cryoballoon vs. RF | 2011–2016 | 23.4 | +39% | 2487 | 5.0 | 249 |
Rubesch-Kütemeyer et al.57 (doi:/10.1007/s10840-019-00564-5) | Cryoballoon over time | 2013 | 11.7 | 1428 | 2.9 | 143 | |
2017 | 5.1 | −57% | 617 | 1.2 | 62 | ||
Reissmann et al.58 (doi:10.1093/europace/eux066) | Cryoballoon optimized vs. standard X-ray programme | 2016 | 10.0 | −82% | 389 | 0.8 | 39 |
Kühne et al.59 (doi: 10.3389/fcvm.2021.664538) | Cryoballoon without PV occlusion testing vs. standard | 2017–2019 | 11.0 | −81% | 368 | 0.7 | 37 |
Rottner et al.60 (doi:/10.3389/fcvm.2022.967341) | Cryoballoon Kodex-EPD version 1.4.6 vs. 1.4.8 | 2019–2021 | 10.9 | −58% | 294 | 0.6 | 29 |
Huang et al.61 (doi:10.1111/jce.14546) | Laserballoon low dose (ICE, 3D-mapping system) vs. standard | 2018–2019 (standard) | 16.9 | 1980 | 4.0 | 198 | |
2018–2019 (low dose) | 1.7 | −91% | 181 | 0.4 | 18 | ||
Magni et al.62 (doi:/10.3389/fcvm.2022.959186) | Pulsed-field ablation | 2021–2022 | 13.5 | 658 | 1.3 | 66 | |
Lemoine et al.63 (doi:/10.1007/s00392-022-02091-2) | Pulsed-field ablation | 2021–2022 | 16.0 | 505 | 1.0 | 51 | |
Bohnen et al.64 (doi/10.1093/europace/euac111) | Pulsed-field ablation | 2021 | 16.0 | 125 | 0.3 | 13 |
Author . | System/technique . | Year of inclusion . | Fluoroscopy time in min . | KAP change . | KAP in cGycm2 . | eED in mSv . | CXR equivalents . |
---|---|---|---|---|---|---|---|
(A) 3D-mapping system (radiofrequency ablation, point-by-point) | |||||||
Estner et al.47 (doi:10.1093/europace/eul079) | 3D-mapping vs. fluoroscopy only | 2005 | 38.9 | −39% | 5660 | 11.3 | 566 |
Lee et al.48 (doi: 10.1093/europace/euv186) | Contact force vs. non-contact force | 2009–2014 | 9.5 | −70% | 104 | 0.2 | 10 |
Christoph et al.43 (doi:10.1093/europace/euu334) | NFCV vs. conventional 3D-mapping | 2013 | 6.4 | −49% | 3726 | 7.5 | 373 |
Huo et al.49 (doi:10.1016/j.hrthm.2015.05.018) | NFCV vs. conventional 3D-mapping | 2014 | 1.8 | −73% | 652 | 1.3 | 65 |
Sommer et al.50 (doi:10.1093/europace/eux378) | NFCV: last 250 vs. first 250 patients | 2012–2017 | 0.5 | −94% | 152 | 0.3 | 15 |
Khalaph et al.51 (doi: 10.1111/pace.14555) | Visualizable steerable sheath vs. non-visualizable sheath | 2019–2021 | 7.0 | −35% | 507 | 1.0 | 51 |
Knecht et al.52 (doi:10.1093/europace/euv006) | Zero-Fluoro after TSP vs. ‘normal-fluoro’ after TSP | 2014 | 4.2 | −25% | 1320 | 2.6 | 132 |
Lehrmann et al.53 (doi:10.1093/europace/euw334) | Radiation dose over time | 2005 | 53.0 | 4635 | 9.3 | 464 | |
2015 | 5.0 | −96% | 185 | 0.4 | 19 | ||
Voskoboinik et al.54 (doi:/10.1016/j.hrthm.2017.02.014) | Radiation dose over time | 2010 | 30.6 | 9.0 | 450 | ||
2015 (CF PVI only) | 11.4 | −66% | 3.1 | 155 | |||
Bourier et al.42 (doi:10.1093/europace/euv364) | Optimized X-ray programme vs. previous settings | 2014–2015 | 8.6 | −77% | 200 | 0.4 | 20 |
Attanasio et al.45 (doi:10.1111/pace.14205) | Optimized X-ray programme | 2015–2018 | 6.2 | 91 | 0.2 | 9 | |
Schreiber et al.55 (doi:/10.1007/s00399-021-00762-7) | Optimized X-ray programme | 2020 | 9.4 | 128 | 0.3 | 13 | |
(B) Single-shot devices for AF ablation | |||||||
Hoffmann et al.56 (doi:10.1093/europace/euz155) | Cryoballoon vs. RF | 2011–2016 | 23.4 | +39% | 2487 | 5.0 | 249 |
Rubesch-Kütemeyer et al.57 (doi:/10.1007/s10840-019-00564-5) | Cryoballoon over time | 2013 | 11.7 | 1428 | 2.9 | 143 | |
2017 | 5.1 | −57% | 617 | 1.2 | 62 | ||
Reissmann et al.58 (doi:10.1093/europace/eux066) | Cryoballoon optimized vs. standard X-ray programme | 2016 | 10.0 | −82% | 389 | 0.8 | 39 |
Kühne et al.59 (doi: 10.3389/fcvm.2021.664538) | Cryoballoon without PV occlusion testing vs. standard | 2017–2019 | 11.0 | −81% | 368 | 0.7 | 37 |
Rottner et al.60 (doi:/10.3389/fcvm.2022.967341) | Cryoballoon Kodex-EPD version 1.4.6 vs. 1.4.8 | 2019–2021 | 10.9 | −58% | 294 | 0.6 | 29 |
Huang et al.61 (doi:10.1111/jce.14546) | Laserballoon low dose (ICE, 3D-mapping system) vs. standard | 2018–2019 (standard) | 16.9 | 1980 | 4.0 | 198 | |
2018–2019 (low dose) | 1.7 | −91% | 181 | 0.4 | 18 | ||
Magni et al.62 (doi:/10.3389/fcvm.2022.959186) | Pulsed-field ablation | 2021–2022 | 13.5 | 658 | 1.3 | 66 | |
Lemoine et al.63 (doi:/10.1007/s00392-022-02091-2) | Pulsed-field ablation | 2021–2022 | 16.0 | 505 | 1.0 | 51 | |
Bohnen et al.64 (doi/10.1093/europace/euac111) | Pulsed-field ablation | 2021 | 16.0 | 125 | 0.3 | 13 |
The table only includes studies that reported kerma area product (KAP). The bold numbers show the reduction of Kerma area product (KAP) by the use of 3 D mapping systems.
CXR, chest X-ray; eED, estimated effective dose; ICE, intracardiac echocardiography; NFCV, non-fluoroscopic catheter visualization; PV, pulmonary vein; RF, radiofrequency; TSP, transseptal puncture.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.