Comparison of the predictive performance of nine representative predictors of PBRs on the benchmark dataset
Predictor . | AUC . | Sensitivity . | FPR (sensitivity to FPR rate) . | FCPR (sensitivity to FCPR rate) . | ||||
---|---|---|---|---|---|---|---|---|
Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | |
CRFPPI | 0.683 | 0.706 | 0.271 | 0.261* | 0.113 [2.4] | 0.097= [2.7] | 0.204 [1.3] | 0.182* [1.4] |
SSWRF | 0.693 | 0.701= | 0.311 | 0.295* | 0.113 [2.8] | 0.105= [2.8] | 0.210 [1.5] | 0.191* [1.5] |
LORIS | 0.657 | 0.671* | 0.266 | 0.260* | 0.114 [2.3] | 0.109= [2.4] | 0.192 [1.4] | 0.167* [1.6] |
SPRINGS | 0.626 | 0.646* | 0.234 | 0.219* | 0.120 [2.0] | 0.103= [2.1] | 0.235 [1.0] | 0.212* [1.0] |
SCRIBER | 0.717 | 0.635* | 0.311 | 0.192* | 0.093 [3.3] | 0.046 [4.2] | 0.100 [3.1] | 0.000 [inf] |
SPRINT | 0.573 | 0.608* | 0.187 | 0.156* | 0.128 [1.5] | 0.110= [1.4] | 0.379 [0.5] | 0.409* [0.4] |
PSIVER | 0.578 | 0.606* | 0.192 | 0.157* | 0.128 [1.5] | 0.108= [1.5] | 0.251 [0.8] | 0.200* [0.8] |
DeepPPISP | 0.642 | 0.599* | 0.477 | 0.500 | 0.286 [1.7] | 0.360* [1.4] | 0.422 [1.1] | 0.500* [1.0] |
SPPIDER | 0.513 | 0.486* | 0.198 | 0.125* | 0.132 [1.5] | 0.102= [1.2] | 0.323 [0.6] | 0.293* [0.4] |
Predictor . | AUC . | Sensitivity . | FPR (sensitivity to FPR rate) . | FCPR (sensitivity to FCPR rate) . | ||||
---|---|---|---|---|---|---|---|---|
Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | |
CRFPPI | 0.683 | 0.706 | 0.271 | 0.261* | 0.113 [2.4] | 0.097= [2.7] | 0.204 [1.3] | 0.182* [1.4] |
SSWRF | 0.693 | 0.701= | 0.311 | 0.295* | 0.113 [2.8] | 0.105= [2.8] | 0.210 [1.5] | 0.191* [1.5] |
LORIS | 0.657 | 0.671* | 0.266 | 0.260* | 0.114 [2.3] | 0.109= [2.4] | 0.192 [1.4] | 0.167* [1.6] |
SPRINGS | 0.626 | 0.646* | 0.234 | 0.219* | 0.120 [2.0] | 0.103= [2.1] | 0.235 [1.0] | 0.212* [1.0] |
SCRIBER | 0.717 | 0.635* | 0.311 | 0.192* | 0.093 [3.3] | 0.046 [4.2] | 0.100 [3.1] | 0.000 [inf] |
SPRINT | 0.573 | 0.608* | 0.187 | 0.156* | 0.128 [1.5] | 0.110= [1.4] | 0.379 [0.5] | 0.409* [0.4] |
PSIVER | 0.578 | 0.606* | 0.192 | 0.157* | 0.128 [1.5] | 0.108= [1.5] | 0.251 [0.8] | 0.200* [0.8] |
DeepPPISP | 0.642 | 0.599* | 0.477 | 0.500 | 0.286 [1.7] | 0.360* [1.4] | 0.422 [1.1] | 0.500* [1.0] |
SPPIDER | 0.513 | 0.486* | 0.198 | 0.125* | 0.132 [1.5] | 0.102= [1.2] | 0.323 [0.6] | 0.293* [0.4] |
Note: The methods are sorted by their median per-protein AUC values in the descending order. Methods indicated in bold font provide the best value of a given measure of predictive performance. We report medians of the per-protein values and assess significance of the differences between the per-protein values of the best method and each of the other methods.
Statistically significant differences (P-value <0.001), while ‘=’ denotes differences that are not significant (P-value ≥ 0.001). We use paired t-test (for normal data) or Wilcoxon test (otherwise) and we assess normality with the Kolmogorov−Smirnov test.
Comparison of the predictive performance of nine representative predictors of PBRs on the benchmark dataset
Predictor . | AUC . | Sensitivity . | FPR (sensitivity to FPR rate) . | FCPR (sensitivity to FCPR rate) . | ||||
---|---|---|---|---|---|---|---|---|
Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | |
CRFPPI | 0.683 | 0.706 | 0.271 | 0.261* | 0.113 [2.4] | 0.097= [2.7] | 0.204 [1.3] | 0.182* [1.4] |
SSWRF | 0.693 | 0.701= | 0.311 | 0.295* | 0.113 [2.8] | 0.105= [2.8] | 0.210 [1.5] | 0.191* [1.5] |
LORIS | 0.657 | 0.671* | 0.266 | 0.260* | 0.114 [2.3] | 0.109= [2.4] | 0.192 [1.4] | 0.167* [1.6] |
SPRINGS | 0.626 | 0.646* | 0.234 | 0.219* | 0.120 [2.0] | 0.103= [2.1] | 0.235 [1.0] | 0.212* [1.0] |
SCRIBER | 0.717 | 0.635* | 0.311 | 0.192* | 0.093 [3.3] | 0.046 [4.2] | 0.100 [3.1] | 0.000 [inf] |
SPRINT | 0.573 | 0.608* | 0.187 | 0.156* | 0.128 [1.5] | 0.110= [1.4] | 0.379 [0.5] | 0.409* [0.4] |
PSIVER | 0.578 | 0.606* | 0.192 | 0.157* | 0.128 [1.5] | 0.108= [1.5] | 0.251 [0.8] | 0.200* [0.8] |
DeepPPISP | 0.642 | 0.599* | 0.477 | 0.500 | 0.286 [1.7] | 0.360* [1.4] | 0.422 [1.1] | 0.500* [1.0] |
SPPIDER | 0.513 | 0.486* | 0.198 | 0.125* | 0.132 [1.5] | 0.102= [1.2] | 0.323 [0.6] | 0.293* [0.4] |
Predictor . | AUC . | Sensitivity . | FPR (sensitivity to FPR rate) . | FCPR (sensitivity to FCPR rate) . | ||||
---|---|---|---|---|---|---|---|---|
Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | Dataset-level . | Median per-protein . | |
CRFPPI | 0.683 | 0.706 | 0.271 | 0.261* | 0.113 [2.4] | 0.097= [2.7] | 0.204 [1.3] | 0.182* [1.4] |
SSWRF | 0.693 | 0.701= | 0.311 | 0.295* | 0.113 [2.8] | 0.105= [2.8] | 0.210 [1.5] | 0.191* [1.5] |
LORIS | 0.657 | 0.671* | 0.266 | 0.260* | 0.114 [2.3] | 0.109= [2.4] | 0.192 [1.4] | 0.167* [1.6] |
SPRINGS | 0.626 | 0.646* | 0.234 | 0.219* | 0.120 [2.0] | 0.103= [2.1] | 0.235 [1.0] | 0.212* [1.0] |
SCRIBER | 0.717 | 0.635* | 0.311 | 0.192* | 0.093 [3.3] | 0.046 [4.2] | 0.100 [3.1] | 0.000 [inf] |
SPRINT | 0.573 | 0.608* | 0.187 | 0.156* | 0.128 [1.5] | 0.110= [1.4] | 0.379 [0.5] | 0.409* [0.4] |
PSIVER | 0.578 | 0.606* | 0.192 | 0.157* | 0.128 [1.5] | 0.108= [1.5] | 0.251 [0.8] | 0.200* [0.8] |
DeepPPISP | 0.642 | 0.599* | 0.477 | 0.500 | 0.286 [1.7] | 0.360* [1.4] | 0.422 [1.1] | 0.500* [1.0] |
SPPIDER | 0.513 | 0.486* | 0.198 | 0.125* | 0.132 [1.5] | 0.102= [1.2] | 0.323 [0.6] | 0.293* [0.4] |
Note: The methods are sorted by their median per-protein AUC values in the descending order. Methods indicated in bold font provide the best value of a given measure of predictive performance. We report medians of the per-protein values and assess significance of the differences between the per-protein values of the best method and each of the other methods.
Statistically significant differences (P-value <0.001), while ‘=’ denotes differences that are not significant (P-value ≥ 0.001). We use paired t-test (for normal data) or Wilcoxon test (otherwise) and we assess normality with the Kolmogorov−Smirnov test.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.