Table 2.

Summary of the noise models tested to properly model the miniJPAS observations. Red bands are defined such that |$\lambda _{\mathrm{eff}}\ge 7\, 416$| Å.

ModelDescription
1G(0,|$\, 1\sigma _{\mu }$|⁠)
2G(0,|$\, 1.5\sigma _{\mu }$|⁠)
3G(0,|$\, 2\sigma _{\mu }$|⁠)
4G(0,|$\, 2.5\sigma _{\mu }$|⁠)
5G(0,|$\, 3\sigma _{\mu }$|⁠)
6|$\frac{2}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠)
7|$\frac{1}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
8|$\frac{2}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
9|$\frac{2}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
10G(0,|$\, 1\sigma _{\mu }$|⁠) [blue bands]
G(0,|$\, 2\sigma _{\mu }$|⁠) [red bands]
11best of above (for each band)
ModelDescription
1G(0,|$\, 1\sigma _{\mu }$|⁠)
2G(0,|$\, 1.5\sigma _{\mu }$|⁠)
3G(0,|$\, 2\sigma _{\mu }$|⁠)
4G(0,|$\, 2.5\sigma _{\mu }$|⁠)
5G(0,|$\, 3\sigma _{\mu }$|⁠)
6|$\frac{2}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠)
7|$\frac{1}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
8|$\frac{2}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
9|$\frac{2}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
10G(0,|$\, 1\sigma _{\mu }$|⁠) [blue bands]
G(0,|$\, 2\sigma _{\mu }$|⁠) [red bands]
11best of above (for each band)
Table 2.

Summary of the noise models tested to properly model the miniJPAS observations. Red bands are defined such that |$\lambda _{\mathrm{eff}}\ge 7\, 416$| Å.

ModelDescription
1G(0,|$\, 1\sigma _{\mu }$|⁠)
2G(0,|$\, 1.5\sigma _{\mu }$|⁠)
3G(0,|$\, 2\sigma _{\mu }$|⁠)
4G(0,|$\, 2.5\sigma _{\mu }$|⁠)
5G(0,|$\, 3\sigma _{\mu }$|⁠)
6|$\frac{2}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠)
7|$\frac{1}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
8|$\frac{2}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
9|$\frac{2}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
10G(0,|$\, 1\sigma _{\mu }$|⁠) [blue bands]
G(0,|$\, 2\sigma _{\mu }$|⁠) [red bands]
11best of above (for each band)
ModelDescription
1G(0,|$\, 1\sigma _{\mu }$|⁠)
2G(0,|$\, 1.5\sigma _{\mu }$|⁠)
3G(0,|$\, 2\sigma _{\mu }$|⁠)
4G(0,|$\, 2.5\sigma _{\mu }$|⁠)
5G(0,|$\, 3\sigma _{\mu }$|⁠)
6|$\frac{2}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠)
7|$\frac{1}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
8|$\frac{2}{3}$|G(0,|$\, 1\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
9|$\frac{2}{3}$|G(0,|$\, 2\sigma _{\mu }$|⁠) + |$\frac{1}{3}$|G(0,|$\, 3\sigma _{\mu }$|⁠)
10G(0,|$\, 1\sigma _{\mu }$|⁠) [blue bands]
G(0,|$\, 2\sigma _{\mu }$|⁠) [red bands]
11best of above (for each band)
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close