Error types made by de novo sequencing algorithms tools pNovo 3, SMSNet, PointNovo and Casanovo on the data sets of IgG1-Human, WIgG1-Mouse and Herceptin. Shown are the total number of predictions, total number of errors and the relative amount of 11 different error types for each algorithm. ‘Other’ includes errors that do not fall into any other categories, e.g. ‘2 AAs replaced by 4 AAs’
Type of sequencing error . | pNovo 3 . | SMSNet . | PointNovo . | Casanovo . |
---|---|---|---|---|
Number of total predictions | 16 170 | 23 227 | 22 417 | 10 907 |
Number of total errors | 14 860 | 20 554 | 19 240 | 5118 |
Inversion first 3 AAs (%) | 5.5 | 5.3 | 5.0 | 11 |
Inversion last 3 AAs (%) | 2.4 | 4.4 | 6.7 | 14 |
Inversion first and last 3 AAs (%) | 0.2 | 0.4 | 1.0 | 0.8 |
1 AA replaced by 1 AA or 2 AAs (%) | 10 | 5.4 | 5.6 | 27 |
2 AAs replaced by 2 AAs (%) | 7.0 | 4.5 | 4.2 | 9.4 |
3 AAs replaced by 3 AAs (%) | 6.1 | 3.7 | 3.6 | 6.1 |
4 AAs replaced by 4 AAs (%) | 2.5 | 3.2 | 2.8 | 4.8 |
5 AAs replaced by 5 AAs (%) | 2.6 | 2.6 | 2.1 | 2.3 |
6 AAs replaced by 6 AAs (%) | 3.1 | 2.3 | 2.2 | 2.1 |
More than 6 AAs wrong (%) | 44 | 57 | 55 | 10 |
Other (%) | 14 | 10 | 10 | 9.9 |
Type of sequencing error . | pNovo 3 . | SMSNet . | PointNovo . | Casanovo . |
---|---|---|---|---|
Number of total predictions | 16 170 | 23 227 | 22 417 | 10 907 |
Number of total errors | 14 860 | 20 554 | 19 240 | 5118 |
Inversion first 3 AAs (%) | 5.5 | 5.3 | 5.0 | 11 |
Inversion last 3 AAs (%) | 2.4 | 4.4 | 6.7 | 14 |
Inversion first and last 3 AAs (%) | 0.2 | 0.4 | 1.0 | 0.8 |
1 AA replaced by 1 AA or 2 AAs (%) | 10 | 5.4 | 5.6 | 27 |
2 AAs replaced by 2 AAs (%) | 7.0 | 4.5 | 4.2 | 9.4 |
3 AAs replaced by 3 AAs (%) | 6.1 | 3.7 | 3.6 | 6.1 |
4 AAs replaced by 4 AAs (%) | 2.5 | 3.2 | 2.8 | 4.8 |
5 AAs replaced by 5 AAs (%) | 2.6 | 2.6 | 2.1 | 2.3 |
6 AAs replaced by 6 AAs (%) | 3.1 | 2.3 | 2.2 | 2.1 |
More than 6 AAs wrong (%) | 44 | 57 | 55 | 10 |
Other (%) | 14 | 10 | 10 | 9.9 |
Error types made by de novo sequencing algorithms tools pNovo 3, SMSNet, PointNovo and Casanovo on the data sets of IgG1-Human, WIgG1-Mouse and Herceptin. Shown are the total number of predictions, total number of errors and the relative amount of 11 different error types for each algorithm. ‘Other’ includes errors that do not fall into any other categories, e.g. ‘2 AAs replaced by 4 AAs’
Type of sequencing error . | pNovo 3 . | SMSNet . | PointNovo . | Casanovo . |
---|---|---|---|---|
Number of total predictions | 16 170 | 23 227 | 22 417 | 10 907 |
Number of total errors | 14 860 | 20 554 | 19 240 | 5118 |
Inversion first 3 AAs (%) | 5.5 | 5.3 | 5.0 | 11 |
Inversion last 3 AAs (%) | 2.4 | 4.4 | 6.7 | 14 |
Inversion first and last 3 AAs (%) | 0.2 | 0.4 | 1.0 | 0.8 |
1 AA replaced by 1 AA or 2 AAs (%) | 10 | 5.4 | 5.6 | 27 |
2 AAs replaced by 2 AAs (%) | 7.0 | 4.5 | 4.2 | 9.4 |
3 AAs replaced by 3 AAs (%) | 6.1 | 3.7 | 3.6 | 6.1 |
4 AAs replaced by 4 AAs (%) | 2.5 | 3.2 | 2.8 | 4.8 |
5 AAs replaced by 5 AAs (%) | 2.6 | 2.6 | 2.1 | 2.3 |
6 AAs replaced by 6 AAs (%) | 3.1 | 2.3 | 2.2 | 2.1 |
More than 6 AAs wrong (%) | 44 | 57 | 55 | 10 |
Other (%) | 14 | 10 | 10 | 9.9 |
Type of sequencing error . | pNovo 3 . | SMSNet . | PointNovo . | Casanovo . |
---|---|---|---|---|
Number of total predictions | 16 170 | 23 227 | 22 417 | 10 907 |
Number of total errors | 14 860 | 20 554 | 19 240 | 5118 |
Inversion first 3 AAs (%) | 5.5 | 5.3 | 5.0 | 11 |
Inversion last 3 AAs (%) | 2.4 | 4.4 | 6.7 | 14 |
Inversion first and last 3 AAs (%) | 0.2 | 0.4 | 1.0 | 0.8 |
1 AA replaced by 1 AA or 2 AAs (%) | 10 | 5.4 | 5.6 | 27 |
2 AAs replaced by 2 AAs (%) | 7.0 | 4.5 | 4.2 | 9.4 |
3 AAs replaced by 3 AAs (%) | 6.1 | 3.7 | 3.6 | 6.1 |
4 AAs replaced by 4 AAs (%) | 2.5 | 3.2 | 2.8 | 4.8 |
5 AAs replaced by 5 AAs (%) | 2.6 | 2.6 | 2.1 | 2.3 |
6 AAs replaced by 6 AAs (%) | 3.1 | 2.3 | 2.2 | 2.1 |
More than 6 AAs wrong (%) | 44 | 57 | 55 | 10 |
Other (%) | 14 | 10 | 10 | 9.9 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.