Table 8.

Comparison between the HIWL and nine other galaxy classification works based on the Galaxy Zoo data set in literature. In this table, Overall val acc represents the highest overall accuracy on validation set, and Overall test acc represents the highest overall accuracy on test set. Num classes represents the number of classes to be divided. The accuracies of Reza (2021) and Lin et al. (2021) are based on the test set, and the others are based on the validation set.

MethodOverallOverallNum classes
val acctest acc
ANN (Reza 2021)98.2 per cent4
ResNet26 (Zhu et al. 2019)95.21 per cent5
SC-Net (Zhang et al. 2022)94.70 per cent5
NODE-ACA (Gupta et al. 2022)95.00 per cent5
Silva & Ventura (2019)94.01 per cent6
layered CNN (Goyal et al. 2020)88.33 per cent3
Jiménez et al. (2020)96.43 per cent2
ViT (Lin et al. (2021)81.21 per cent8
EfficientNet-B5 (Kalvankar et al. 2020)93.70 per cent7
HIWL97.22 per cent96.32 per cent5
MethodOverallOverallNum classes
val acctest acc
ANN (Reza 2021)98.2 per cent4
ResNet26 (Zhu et al. 2019)95.21 per cent5
SC-Net (Zhang et al. 2022)94.70 per cent5
NODE-ACA (Gupta et al. 2022)95.00 per cent5
Silva & Ventura (2019)94.01 per cent6
layered CNN (Goyal et al. 2020)88.33 per cent3
Jiménez et al. (2020)96.43 per cent2
ViT (Lin et al. (2021)81.21 per cent8
EfficientNet-B5 (Kalvankar et al. 2020)93.70 per cent7
HIWL97.22 per cent96.32 per cent5
Table 8.

Comparison between the HIWL and nine other galaxy classification works based on the Galaxy Zoo data set in literature. In this table, Overall val acc represents the highest overall accuracy on validation set, and Overall test acc represents the highest overall accuracy on test set. Num classes represents the number of classes to be divided. The accuracies of Reza (2021) and Lin et al. (2021) are based on the test set, and the others are based on the validation set.

MethodOverallOverallNum classes
val acctest acc
ANN (Reza 2021)98.2 per cent4
ResNet26 (Zhu et al. 2019)95.21 per cent5
SC-Net (Zhang et al. 2022)94.70 per cent5
NODE-ACA (Gupta et al. 2022)95.00 per cent5
Silva & Ventura (2019)94.01 per cent6
layered CNN (Goyal et al. 2020)88.33 per cent3
Jiménez et al. (2020)96.43 per cent2
ViT (Lin et al. (2021)81.21 per cent8
EfficientNet-B5 (Kalvankar et al. 2020)93.70 per cent7
HIWL97.22 per cent96.32 per cent5
MethodOverallOverallNum classes
val acctest acc
ANN (Reza 2021)98.2 per cent4
ResNet26 (Zhu et al. 2019)95.21 per cent5
SC-Net (Zhang et al. 2022)94.70 per cent5
NODE-ACA (Gupta et al. 2022)95.00 per cent5
Silva & Ventura (2019)94.01 per cent6
layered CNN (Goyal et al. 2020)88.33 per cent3
Jiménez et al. (2020)96.43 per cent2
ViT (Lin et al. (2021)81.21 per cent8
EfficientNet-B5 (Kalvankar et al. 2020)93.70 per cent7
HIWL97.22 per cent96.32 per cent5
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close