Table 7.

Comparison of the test results before and after combining the method HIWL with the classical model. The table contains 11 comparison models such as Dieleman, ResNet, Vision Transoformer, etc. Avg acc represents the average accuracy of 10 runs for each model, Avg acc (with HIWL) represents the average accuracy of 10 runs for each model after incorporating HIWL, and Promotion represents the difference between the accuracy of the model after incorporating HIWL and the original model.

ModelAvg accAvg accPromotion
(with HIWL)
Dieleman (Dieleman et al. 2015)0.93370.94000.0063
ResNet26 (Zhu et al. 2019)0.90740.91470.0073
VGG16 (Simonyan & Zisserman 2015)0.94310.94690.0038
GoogleNet (Szegedy et al. 2015)0.94800.95070.0027
ResNet34 (He et al. 2016)0.95070.95970.0090
ResNet50 (He et al. 2016)0.94690.94970.0028
EfficientNet-B0 (Tan & Le 2019)0.95210.95770.0056
EfficientNet-B1 (Tan & Le 2019)0.95420.96120.0070
EfficientNet-B2 (Tan & Le 2019)0.95030.95800.0077
Vision Transformer (Dosovitskiy et al. 2021)0.92640.94510.0187
ModelAvg accAvg accPromotion
(with HIWL)
Dieleman (Dieleman et al. 2015)0.93370.94000.0063
ResNet26 (Zhu et al. 2019)0.90740.91470.0073
VGG16 (Simonyan & Zisserman 2015)0.94310.94690.0038
GoogleNet (Szegedy et al. 2015)0.94800.95070.0027
ResNet34 (He et al. 2016)0.95070.95970.0090
ResNet50 (He et al. 2016)0.94690.94970.0028
EfficientNet-B0 (Tan & Le 2019)0.95210.95770.0056
EfficientNet-B1 (Tan & Le 2019)0.95420.96120.0070
EfficientNet-B2 (Tan & Le 2019)0.95030.95800.0077
Vision Transformer (Dosovitskiy et al. 2021)0.92640.94510.0187
Table 7.

Comparison of the test results before and after combining the method HIWL with the classical model. The table contains 11 comparison models such as Dieleman, ResNet, Vision Transoformer, etc. Avg acc represents the average accuracy of 10 runs for each model, Avg acc (with HIWL) represents the average accuracy of 10 runs for each model after incorporating HIWL, and Promotion represents the difference between the accuracy of the model after incorporating HIWL and the original model.

ModelAvg accAvg accPromotion
(with HIWL)
Dieleman (Dieleman et al. 2015)0.93370.94000.0063
ResNet26 (Zhu et al. 2019)0.90740.91470.0073
VGG16 (Simonyan & Zisserman 2015)0.94310.94690.0038
GoogleNet (Szegedy et al. 2015)0.94800.95070.0027
ResNet34 (He et al. 2016)0.95070.95970.0090
ResNet50 (He et al. 2016)0.94690.94970.0028
EfficientNet-B0 (Tan & Le 2019)0.95210.95770.0056
EfficientNet-B1 (Tan & Le 2019)0.95420.96120.0070
EfficientNet-B2 (Tan & Le 2019)0.95030.95800.0077
Vision Transformer (Dosovitskiy et al. 2021)0.92640.94510.0187
ModelAvg accAvg accPromotion
(with HIWL)
Dieleman (Dieleman et al. 2015)0.93370.94000.0063
ResNet26 (Zhu et al. 2019)0.90740.91470.0073
VGG16 (Simonyan & Zisserman 2015)0.94310.94690.0038
GoogleNet (Szegedy et al. 2015)0.94800.95070.0027
ResNet34 (He et al. 2016)0.95070.95970.0090
ResNet50 (He et al. 2016)0.94690.94970.0028
EfficientNet-B0 (Tan & Le 2019)0.95210.95770.0056
EfficientNet-B1 (Tan & Le 2019)0.95420.96120.0070
EfficientNet-B2 (Tan & Le 2019)0.95030.95800.0077
Vision Transformer (Dosovitskiy et al. 2021)0.92640.94510.0187
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close