Multiple linear regression analysis of the relationship between DTI and diffraction parameters
. | R2 (95% CI) . | R2 adj . | F . | t (FA) . | t (AD) . | t (MD) . | t (CP) . | t (CS) . |
---|---|---|---|---|---|---|---|---|
. | p . | . | . | p . | p . | p . | p . | p . |
CL | 0.268 (0.000–0.410) | 0.076 | 1.393 | 1.597 | 0.492 | −0.408 | 1.250 | 1.501 |
0.271 | 0.127 | 0.628 | 0.688 | 0.226 | 0.150 | |||
λL | 0.042 (0.000–0.070) | −0.211 | 0.165 | −0.016 | 0.362 | −0.296 | 0.410 | 0.333 |
0.972 | 0.987 | 0.721 | 0.770 | 0.686 | 0.743 | |||
CH | 0.267 (0.000–0.410) | 0.074 | 1.385 | 1.791 | 0.352 | −0.279 | 1.311 | 1.527 |
0.274 | 0.089 | 0.729 | 0.784 | 0.206 | 0.143 | |||
λH | 0.073 (0.000–0.120) | −0.171 | 0.300 | −0.195 | 0.184 | −0.115 | 0.051 | −0.047 |
0.907 | 0.847 | 0.856 | 0.910 | 0.960 | 0.963 |
. | R2 (95% CI) . | R2 adj . | F . | t (FA) . | t (AD) . | t (MD) . | t (CP) . | t (CS) . |
---|---|---|---|---|---|---|---|---|
. | p . | . | . | p . | p . | p . | p . | p . |
CL | 0.268 (0.000–0.410) | 0.076 | 1.393 | 1.597 | 0.492 | −0.408 | 1.250 | 1.501 |
0.271 | 0.127 | 0.628 | 0.688 | 0.226 | 0.150 | |||
λL | 0.042 (0.000–0.070) | −0.211 | 0.165 | −0.016 | 0.362 | −0.296 | 0.410 | 0.333 |
0.972 | 0.987 | 0.721 | 0.770 | 0.686 | 0.743 | |||
CH | 0.267 (0.000–0.410) | 0.074 | 1.385 | 1.791 | 0.352 | −0.279 | 1.311 | 1.527 |
0.274 | 0.089 | 0.729 | 0.784 | 0.206 | 0.143 | |||
λH | 0.073 (0.000–0.120) | −0.171 | 0.300 | −0.195 | 0.184 | −0.115 | 0.051 | −0.047 |
0.907 | 0.847 | 0.856 | 0.910 | 0.960 | 0.963 |
p values for multiple linear regression tests between DTI (predictors) and diffraction parameters (dependent variables). RD and CL were excluded variables based on the linear regression model; data not shown in this table.
AD, axial diffusivity; CP, planar anisotropy index; CS, spherical anisotropy index; FA, fractional anisotropy; CH, hexagonal phase content; λH, hexagonal phase period; CL, lamellar phase content; λL, lamellar phase period; MD, mean diffusivity.
Multiple linear regression analysis of the relationship between DTI and diffraction parameters
. | R2 (95% CI) . | R2 adj . | F . | t (FA) . | t (AD) . | t (MD) . | t (CP) . | t (CS) . |
---|---|---|---|---|---|---|---|---|
. | p . | . | . | p . | p . | p . | p . | p . |
CL | 0.268 (0.000–0.410) | 0.076 | 1.393 | 1.597 | 0.492 | −0.408 | 1.250 | 1.501 |
0.271 | 0.127 | 0.628 | 0.688 | 0.226 | 0.150 | |||
λL | 0.042 (0.000–0.070) | −0.211 | 0.165 | −0.016 | 0.362 | −0.296 | 0.410 | 0.333 |
0.972 | 0.987 | 0.721 | 0.770 | 0.686 | 0.743 | |||
CH | 0.267 (0.000–0.410) | 0.074 | 1.385 | 1.791 | 0.352 | −0.279 | 1.311 | 1.527 |
0.274 | 0.089 | 0.729 | 0.784 | 0.206 | 0.143 | |||
λH | 0.073 (0.000–0.120) | −0.171 | 0.300 | −0.195 | 0.184 | −0.115 | 0.051 | −0.047 |
0.907 | 0.847 | 0.856 | 0.910 | 0.960 | 0.963 |
. | R2 (95% CI) . | R2 adj . | F . | t (FA) . | t (AD) . | t (MD) . | t (CP) . | t (CS) . |
---|---|---|---|---|---|---|---|---|
. | p . | . | . | p . | p . | p . | p . | p . |
CL | 0.268 (0.000–0.410) | 0.076 | 1.393 | 1.597 | 0.492 | −0.408 | 1.250 | 1.501 |
0.271 | 0.127 | 0.628 | 0.688 | 0.226 | 0.150 | |||
λL | 0.042 (0.000–0.070) | −0.211 | 0.165 | −0.016 | 0.362 | −0.296 | 0.410 | 0.333 |
0.972 | 0.987 | 0.721 | 0.770 | 0.686 | 0.743 | |||
CH | 0.267 (0.000–0.410) | 0.074 | 1.385 | 1.791 | 0.352 | −0.279 | 1.311 | 1.527 |
0.274 | 0.089 | 0.729 | 0.784 | 0.206 | 0.143 | |||
λH | 0.073 (0.000–0.120) | −0.171 | 0.300 | −0.195 | 0.184 | −0.115 | 0.051 | −0.047 |
0.907 | 0.847 | 0.856 | 0.910 | 0.960 | 0.963 |
p values for multiple linear regression tests between DTI (predictors) and diffraction parameters (dependent variables). RD and CL were excluded variables based on the linear regression model; data not shown in this table.
AD, axial diffusivity; CP, planar anisotropy index; CS, spherical anisotropy index; FA, fractional anisotropy; CH, hexagonal phase content; λH, hexagonal phase period; CL, lamellar phase content; λL, lamellar phase period; MD, mean diffusivity.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.