Table 1

The top-3 critical paths and top-3 KEGG pathways of the potential drugs for the treatment of prostate cancer

DrugCritical paths (Top-3)KEGG pathways (Top-3)
DutasterideSRD5A2
ORM1|$\to$|TMSB4X
SRD5A1|$\to$|UGT2B17
PI3K-Akt signaling pathway
Lipid and atherosclerosis
Hepatitis B
AspirinPLAUR
FASLG
TGFB1
Proteoglycans in cancer
Hepatitis B
Lipid and atherosclerosis
ErlotinibSTAT3
CYP3A5
STAT3|$\to$|NT5C2
EGFR tyrosine kinase inhibitor resistance
Chemical carcinogenesis—receptor activation
Prostate cancer
NicergolineADRA1A
ARRA1A|$\to$|Hydrogen|$\to$|Azelaic Acid|$\to$|SRD5A2
ADRA1A|$\to$|Triphosadenine|$\to$|Diethylstilbestrol|$\to$|SLC30A3
Steroid hormone biosynthesis
Prostate cancer
Cysteine and methionine metabolism
Acetohydroxamic acidMMP13
MMP8|$\to$|KLK2
MMP13|$\to$|MMP7
Human T-cell leukemia virus 1 infection
Prostate cancer
Human cytomegalovirus infection
MidostaurinRET
AURKB
CYP3A5
PI3K-Akt signaling pathway
Chemical carcinogenesis—receptor activation
Chemical carcinogenesis—DNA adducts
ApalutamideEnzalutamide|$\to$|CYP3A5
ABCB1
Abiraterone|$\to$|SULT2A1
Prostate cancer
Chemical carcinogenesis—DNA adducts
Metabolism of xenobiotics by cytochrome P450
AtorvastatinABCC4
CYP3A5
CYP2C19
Chemical carcinogenesis—DNA adducts
Drug metabolism—cytochrome P450
Metabolism of xenobiotics by cytochrome P450
CarisoprodolCYP2C19
CYP2C19|$\to$|Hydrogen|$\to$|Glycerol|$\to$|FERMT2
Oxicone|$\to$|Chloride ion|$\to$|ITGAV
Arachidonic acid metabolism
Chemical carcinogenesis—DNA adducts
Drug metabolism—cytochrome P450
OxcarbazepineAKR1C3
CYP2C19
ABCB1
Steroid hormone biosynthesis
Chemical carcinogenesis—DNA adducts
Chemical carcinogenesis—reactive oxygen species
DrugCritical paths (Top-3)KEGG pathways (Top-3)
DutasterideSRD5A2
ORM1|$\to$|TMSB4X
SRD5A1|$\to$|UGT2B17
PI3K-Akt signaling pathway
Lipid and atherosclerosis
Hepatitis B
AspirinPLAUR
FASLG
TGFB1
Proteoglycans in cancer
Hepatitis B
Lipid and atherosclerosis
ErlotinibSTAT3
CYP3A5
STAT3|$\to$|NT5C2
EGFR tyrosine kinase inhibitor resistance
Chemical carcinogenesis—receptor activation
Prostate cancer
NicergolineADRA1A
ARRA1A|$\to$|Hydrogen|$\to$|Azelaic Acid|$\to$|SRD5A2
ADRA1A|$\to$|Triphosadenine|$\to$|Diethylstilbestrol|$\to$|SLC30A3
Steroid hormone biosynthesis
Prostate cancer
Cysteine and methionine metabolism
Acetohydroxamic acidMMP13
MMP8|$\to$|KLK2
MMP13|$\to$|MMP7
Human T-cell leukemia virus 1 infection
Prostate cancer
Human cytomegalovirus infection
MidostaurinRET
AURKB
CYP3A5
PI3K-Akt signaling pathway
Chemical carcinogenesis—receptor activation
Chemical carcinogenesis—DNA adducts
ApalutamideEnzalutamide|$\to$|CYP3A5
ABCB1
Abiraterone|$\to$|SULT2A1
Prostate cancer
Chemical carcinogenesis—DNA adducts
Metabolism of xenobiotics by cytochrome P450
AtorvastatinABCC4
CYP3A5
CYP2C19
Chemical carcinogenesis—DNA adducts
Drug metabolism—cytochrome P450
Metabolism of xenobiotics by cytochrome P450
CarisoprodolCYP2C19
CYP2C19|$\to$|Hydrogen|$\to$|Glycerol|$\to$|FERMT2
Oxicone|$\to$|Chloride ion|$\to$|ITGAV
Arachidonic acid metabolism
Chemical carcinogenesis—DNA adducts
Drug metabolism—cytochrome P450
OxcarbazepineAKR1C3
CYP2C19
ABCB1
Steroid hormone biosynthesis
Chemical carcinogenesis—DNA adducts
Chemical carcinogenesis—reactive oxygen species

These drugs are ranked top 10 by iDPath among all the FDA-approved drugs used in this study. The head (drug) and tail (prostate cancer) of these critical paths are ignored due to the limit of space. The top-3 critical paths are determined by the weights generated by the path attention module. The KEGG pathways are identified by KEGG enrichment analysis on the proteins existed in the top-50 critical paths and ranked by P-adjust values.

Table 1

The top-3 critical paths and top-3 KEGG pathways of the potential drugs for the treatment of prostate cancer

DrugCritical paths (Top-3)KEGG pathways (Top-3)
DutasterideSRD5A2
ORM1|$\to$|TMSB4X
SRD5A1|$\to$|UGT2B17
PI3K-Akt signaling pathway
Lipid and atherosclerosis
Hepatitis B
AspirinPLAUR
FASLG
TGFB1
Proteoglycans in cancer
Hepatitis B
Lipid and atherosclerosis
ErlotinibSTAT3
CYP3A5
STAT3|$\to$|NT5C2
EGFR tyrosine kinase inhibitor resistance
Chemical carcinogenesis—receptor activation
Prostate cancer
NicergolineADRA1A
ARRA1A|$\to$|Hydrogen|$\to$|Azelaic Acid|$\to$|SRD5A2
ADRA1A|$\to$|Triphosadenine|$\to$|Diethylstilbestrol|$\to$|SLC30A3
Steroid hormone biosynthesis
Prostate cancer
Cysteine and methionine metabolism
Acetohydroxamic acidMMP13
MMP8|$\to$|KLK2
MMP13|$\to$|MMP7
Human T-cell leukemia virus 1 infection
Prostate cancer
Human cytomegalovirus infection
MidostaurinRET
AURKB
CYP3A5
PI3K-Akt signaling pathway
Chemical carcinogenesis—receptor activation
Chemical carcinogenesis—DNA adducts
ApalutamideEnzalutamide|$\to$|CYP3A5
ABCB1
Abiraterone|$\to$|SULT2A1
Prostate cancer
Chemical carcinogenesis—DNA adducts
Metabolism of xenobiotics by cytochrome P450
AtorvastatinABCC4
CYP3A5
CYP2C19
Chemical carcinogenesis—DNA adducts
Drug metabolism—cytochrome P450
Metabolism of xenobiotics by cytochrome P450
CarisoprodolCYP2C19
CYP2C19|$\to$|Hydrogen|$\to$|Glycerol|$\to$|FERMT2
Oxicone|$\to$|Chloride ion|$\to$|ITGAV
Arachidonic acid metabolism
Chemical carcinogenesis—DNA adducts
Drug metabolism—cytochrome P450
OxcarbazepineAKR1C3
CYP2C19
ABCB1
Steroid hormone biosynthesis
Chemical carcinogenesis—DNA adducts
Chemical carcinogenesis—reactive oxygen species
DrugCritical paths (Top-3)KEGG pathways (Top-3)
DutasterideSRD5A2
ORM1|$\to$|TMSB4X
SRD5A1|$\to$|UGT2B17
PI3K-Akt signaling pathway
Lipid and atherosclerosis
Hepatitis B
AspirinPLAUR
FASLG
TGFB1
Proteoglycans in cancer
Hepatitis B
Lipid and atherosclerosis
ErlotinibSTAT3
CYP3A5
STAT3|$\to$|NT5C2
EGFR tyrosine kinase inhibitor resistance
Chemical carcinogenesis—receptor activation
Prostate cancer
NicergolineADRA1A
ARRA1A|$\to$|Hydrogen|$\to$|Azelaic Acid|$\to$|SRD5A2
ADRA1A|$\to$|Triphosadenine|$\to$|Diethylstilbestrol|$\to$|SLC30A3
Steroid hormone biosynthesis
Prostate cancer
Cysteine and methionine metabolism
Acetohydroxamic acidMMP13
MMP8|$\to$|KLK2
MMP13|$\to$|MMP7
Human T-cell leukemia virus 1 infection
Prostate cancer
Human cytomegalovirus infection
MidostaurinRET
AURKB
CYP3A5
PI3K-Akt signaling pathway
Chemical carcinogenesis—receptor activation
Chemical carcinogenesis—DNA adducts
ApalutamideEnzalutamide|$\to$|CYP3A5
ABCB1
Abiraterone|$\to$|SULT2A1
Prostate cancer
Chemical carcinogenesis—DNA adducts
Metabolism of xenobiotics by cytochrome P450
AtorvastatinABCC4
CYP3A5
CYP2C19
Chemical carcinogenesis—DNA adducts
Drug metabolism—cytochrome P450
Metabolism of xenobiotics by cytochrome P450
CarisoprodolCYP2C19
CYP2C19|$\to$|Hydrogen|$\to$|Glycerol|$\to$|FERMT2
Oxicone|$\to$|Chloride ion|$\to$|ITGAV
Arachidonic acid metabolism
Chemical carcinogenesis—DNA adducts
Drug metabolism—cytochrome P450
OxcarbazepineAKR1C3
CYP2C19
ABCB1
Steroid hormone biosynthesis
Chemical carcinogenesis—DNA adducts
Chemical carcinogenesis—reactive oxygen species

These drugs are ranked top 10 by iDPath among all the FDA-approved drugs used in this study. The head (drug) and tail (prostate cancer) of these critical paths are ignored due to the limit of space. The top-3 critical paths are determined by the weights generated by the path attention module. The KEGG pathways are identified by KEGG enrichment analysis on the proteins existed in the top-50 critical paths and ranked by P-adjust values.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close