Comparison results of the proposed GAE-LGA and other deep learning methods on datasets NPInter, LncTarD and LncRNA2Targe under the same experimental setup
Method . | NPInter . | LncTarD . | LncRNA2Targe . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | AUC . | AUPR . | F1-score . | MCC . | AUC . | AUPR . | F1-score . | MCC . | AUC . | AUPR . | F1-score . | MCC . |
GAE-LGA | 0.9743 | 0.6730 | 0.8468 | 0.7262 | 0.9308 | 0.6345 | 0.8831 | 0.6123 | 0.8956 | 0.5295 | 0.7787 | 0.7871 |
DeepLGP | 0.9218 | 0.6013 | 0.7526 | 0.7216 | 0.9196 | 0.6501 | 0.7508 | 0.6102 | 0.8657 | 0.5058 | 0.7582 | 0.7815 |
CNN | 0.9102 | 0.5961 | 0.8197 | 0.7135 | 0.9103 | 0.6254 | 0.8003 | 0.6025 | 0.8802 | 0.5062 | 0.7713 | 0.7658 |
Autoencoder | 0.9013 | 0.5936 | 0.7761 | 0.6897 | 0.9042 | 0.6188 | 0.7952 | 0.5901 | 0.8752 | 0.5108 | 0.7652 | 0.7726 |
Autoencoder+CNN | 0.9205 | 0.6009 | 0.8453 | 0.7258 | 0.9158 | 0.6291 | 0.8527 | 0.6136 | 0.8865 | 0.5163 | 0.7738 | 0.7829 |
Method . | NPInter . | LncTarD . | LncRNA2Targe . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | AUC . | AUPR . | F1-score . | MCC . | AUC . | AUPR . | F1-score . | MCC . | AUC . | AUPR . | F1-score . | MCC . |
GAE-LGA | 0.9743 | 0.6730 | 0.8468 | 0.7262 | 0.9308 | 0.6345 | 0.8831 | 0.6123 | 0.8956 | 0.5295 | 0.7787 | 0.7871 |
DeepLGP | 0.9218 | 0.6013 | 0.7526 | 0.7216 | 0.9196 | 0.6501 | 0.7508 | 0.6102 | 0.8657 | 0.5058 | 0.7582 | 0.7815 |
CNN | 0.9102 | 0.5961 | 0.8197 | 0.7135 | 0.9103 | 0.6254 | 0.8003 | 0.6025 | 0.8802 | 0.5062 | 0.7713 | 0.7658 |
Autoencoder | 0.9013 | 0.5936 | 0.7761 | 0.6897 | 0.9042 | 0.6188 | 0.7952 | 0.5901 | 0.8752 | 0.5108 | 0.7652 | 0.7726 |
Autoencoder+CNN | 0.9205 | 0.6009 | 0.8453 | 0.7258 | 0.9158 | 0.6291 | 0.8527 | 0.6136 | 0.8865 | 0.5163 | 0.7738 | 0.7829 |
Note: The bold value corresponds to the best performance method for each metric.
Comparison results of the proposed GAE-LGA and other deep learning methods on datasets NPInter, LncTarD and LncRNA2Targe under the same experimental setup
Method . | NPInter . | LncTarD . | LncRNA2Targe . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | AUC . | AUPR . | F1-score . | MCC . | AUC . | AUPR . | F1-score . | MCC . | AUC . | AUPR . | F1-score . | MCC . |
GAE-LGA | 0.9743 | 0.6730 | 0.8468 | 0.7262 | 0.9308 | 0.6345 | 0.8831 | 0.6123 | 0.8956 | 0.5295 | 0.7787 | 0.7871 |
DeepLGP | 0.9218 | 0.6013 | 0.7526 | 0.7216 | 0.9196 | 0.6501 | 0.7508 | 0.6102 | 0.8657 | 0.5058 | 0.7582 | 0.7815 |
CNN | 0.9102 | 0.5961 | 0.8197 | 0.7135 | 0.9103 | 0.6254 | 0.8003 | 0.6025 | 0.8802 | 0.5062 | 0.7713 | 0.7658 |
Autoencoder | 0.9013 | 0.5936 | 0.7761 | 0.6897 | 0.9042 | 0.6188 | 0.7952 | 0.5901 | 0.8752 | 0.5108 | 0.7652 | 0.7726 |
Autoencoder+CNN | 0.9205 | 0.6009 | 0.8453 | 0.7258 | 0.9158 | 0.6291 | 0.8527 | 0.6136 | 0.8865 | 0.5163 | 0.7738 | 0.7829 |
Method . | NPInter . | LncTarD . | LncRNA2Targe . | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | AUC . | AUPR . | F1-score . | MCC . | AUC . | AUPR . | F1-score . | MCC . | AUC . | AUPR . | F1-score . | MCC . |
GAE-LGA | 0.9743 | 0.6730 | 0.8468 | 0.7262 | 0.9308 | 0.6345 | 0.8831 | 0.6123 | 0.8956 | 0.5295 | 0.7787 | 0.7871 |
DeepLGP | 0.9218 | 0.6013 | 0.7526 | 0.7216 | 0.9196 | 0.6501 | 0.7508 | 0.6102 | 0.8657 | 0.5058 | 0.7582 | 0.7815 |
CNN | 0.9102 | 0.5961 | 0.8197 | 0.7135 | 0.9103 | 0.6254 | 0.8003 | 0.6025 | 0.8802 | 0.5062 | 0.7713 | 0.7658 |
Autoencoder | 0.9013 | 0.5936 | 0.7761 | 0.6897 | 0.9042 | 0.6188 | 0.7952 | 0.5901 | 0.8752 | 0.5108 | 0.7652 | 0.7726 |
Autoencoder+CNN | 0.9205 | 0.6009 | 0.8453 | 0.7258 | 0.9158 | 0.6291 | 0.8527 | 0.6136 | 0.8865 | 0.5163 | 0.7738 | 0.7829 |
Note: The bold value corresponds to the best performance method for each metric.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.