Table 3

Comparison results of the proposed GAE-LGA and other deep learning methods on datasets NPInter, LncTarD and LncRNA2Targe under the same experimental setup

MethodNPInterLncTarDLncRNA2Targe
AUCAUPRF1-scoreMCCAUCAUPRF1-scoreMCCAUCAUPRF1-scoreMCC
GAE-LGA0.97430.67300.84680.72620.93080.63450.88310.61230.89560.52950.77870.7871
DeepLGP0.92180.60130.75260.72160.91960.65010.75080.61020.86570.50580.75820.7815
CNN0.91020.59610.81970.71350.91030.62540.80030.60250.88020.50620.77130.7658
Autoencoder0.90130.59360.77610.68970.90420.61880.79520.59010.87520.51080.76520.7726
Autoencoder+CNN0.92050.60090.84530.72580.91580.62910.85270.61360.88650.51630.77380.7829
MethodNPInterLncTarDLncRNA2Targe
AUCAUPRF1-scoreMCCAUCAUPRF1-scoreMCCAUCAUPRF1-scoreMCC
GAE-LGA0.97430.67300.84680.72620.93080.63450.88310.61230.89560.52950.77870.7871
DeepLGP0.92180.60130.75260.72160.91960.65010.75080.61020.86570.50580.75820.7815
CNN0.91020.59610.81970.71350.91030.62540.80030.60250.88020.50620.77130.7658
Autoencoder0.90130.59360.77610.68970.90420.61880.79520.59010.87520.51080.76520.7726
Autoencoder+CNN0.92050.60090.84530.72580.91580.62910.85270.61360.88650.51630.77380.7829

Note: The bold value corresponds to the best performance method for each metric.

Table 3

Comparison results of the proposed GAE-LGA and other deep learning methods on datasets NPInter, LncTarD and LncRNA2Targe under the same experimental setup

MethodNPInterLncTarDLncRNA2Targe
AUCAUPRF1-scoreMCCAUCAUPRF1-scoreMCCAUCAUPRF1-scoreMCC
GAE-LGA0.97430.67300.84680.72620.93080.63450.88310.61230.89560.52950.77870.7871
DeepLGP0.92180.60130.75260.72160.91960.65010.75080.61020.86570.50580.75820.7815
CNN0.91020.59610.81970.71350.91030.62540.80030.60250.88020.50620.77130.7658
Autoencoder0.90130.59360.77610.68970.90420.61880.79520.59010.87520.51080.76520.7726
Autoencoder+CNN0.92050.60090.84530.72580.91580.62910.85270.61360.88650.51630.77380.7829
MethodNPInterLncTarDLncRNA2Targe
AUCAUPRF1-scoreMCCAUCAUPRF1-scoreMCCAUCAUPRF1-scoreMCC
GAE-LGA0.97430.67300.84680.72620.93080.63450.88310.61230.89560.52950.77870.7871
DeepLGP0.92180.60130.75260.72160.91960.65010.75080.61020.86570.50580.75820.7815
CNN0.91020.59610.81970.71350.91030.62540.80030.60250.88020.50620.77130.7658
Autoencoder0.90130.59360.77610.68970.90420.61880.79520.59010.87520.51080.76520.7726
Autoencoder+CNN0.92050.60090.84530.72580.91580.62910.85270.61360.88650.51630.77380.7829

Note: The bold value corresponds to the best performance method for each metric.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close