Table D1.

Hyperparameters used in a CNN architecture trained using spectra with a higher S/N. These values are selected using a Bayesian optimization algorithm.

HyperparametersOptimized value
Data Inputwindow size (ws)285
cnpix1
CNNL20.0
Architecturedropout0.6
conv_filter_1256
conv_filter_2256
conv_filter_3512
conv_kernel_110
conv_kernel_27
conv_kernel_36
dense_164
dense_2_ID512
dense_2_N512
dense_2_z256
dense_2_b128
HyperparametersOptimized value
Data Inputwindow size (ws)285
cnpix1
CNNL20.0
Architecturedropout0.6
conv_filter_1256
conv_filter_2256
conv_filter_3512
conv_kernel_110
conv_kernel_27
conv_kernel_36
dense_164
dense_2_ID512
dense_2_N512
dense_2_z256
dense_2_b128
Table D1.

Hyperparameters used in a CNN architecture trained using spectra with a higher S/N. These values are selected using a Bayesian optimization algorithm.

HyperparametersOptimized value
Data Inputwindow size (ws)285
cnpix1
CNNL20.0
Architecturedropout0.6
conv_filter_1256
conv_filter_2256
conv_filter_3512
conv_kernel_110
conv_kernel_27
conv_kernel_36
dense_164
dense_2_ID512
dense_2_N512
dense_2_z256
dense_2_b128
HyperparametersOptimized value
Data Inputwindow size (ws)285
cnpix1
CNNL20.0
Architecturedropout0.6
conv_filter_1256
conv_filter_2256
conv_filter_3512
conv_kernel_110
conv_kernel_27
conv_kernel_36
dense_164
dense_2_ID512
dense_2_N512
dense_2_z256
dense_2_b128
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close