Hyperparameters used in a CNN architecture trained with noiseless spectra. These values are selected using a Bayesian optimization algorithm.
. | Hyperparameters . | Optimized value . |
---|---|---|
Data Input | window size (ws) | 259 |
cnpix | 5 | |
CNN | L2 | 0.0 |
Architecture | dropout | 0.0 |
conv_filter_1 | 128 | |
conv_filter_2 | 128 | |
conv_filter_3 | 128 | |
conv_kernel_1 | 8 | |
conv_kernel_2 | 7 | |
conv_kernel_3 | 8 | |
dense_1 | 128 | |
dense_2_ID | 256 | |
dense_2_N | 512 | |
dense_2_z | 256 | |
dense_2_b | 128 |
. | Hyperparameters . | Optimized value . |
---|---|---|
Data Input | window size (ws) | 259 |
cnpix | 5 | |
CNN | L2 | 0.0 |
Architecture | dropout | 0.0 |
conv_filter_1 | 128 | |
conv_filter_2 | 128 | |
conv_filter_3 | 128 | |
conv_kernel_1 | 8 | |
conv_kernel_2 | 7 | |
conv_kernel_3 | 8 | |
dense_1 | 128 | |
dense_2_ID | 256 | |
dense_2_N | 512 | |
dense_2_z | 256 | |
dense_2_b | 128 |
Hyperparameters used in a CNN architecture trained with noiseless spectra. These values are selected using a Bayesian optimization algorithm.
. | Hyperparameters . | Optimized value . |
---|---|---|
Data Input | window size (ws) | 259 |
cnpix | 5 | |
CNN | L2 | 0.0 |
Architecture | dropout | 0.0 |
conv_filter_1 | 128 | |
conv_filter_2 | 128 | |
conv_filter_3 | 128 | |
conv_kernel_1 | 8 | |
conv_kernel_2 | 7 | |
conv_kernel_3 | 8 | |
dense_1 | 128 | |
dense_2_ID | 256 | |
dense_2_N | 512 | |
dense_2_z | 256 | |
dense_2_b | 128 |
. | Hyperparameters . | Optimized value . |
---|---|---|
Data Input | window size (ws) | 259 |
cnpix | 5 | |
CNN | L2 | 0.0 |
Architecture | dropout | 0.0 |
conv_filter_1 | 128 | |
conv_filter_2 | 128 | |
conv_filter_3 | 128 | |
conv_kernel_1 | 8 | |
conv_kernel_2 | 7 | |
conv_kernel_3 | 8 | |
dense_1 | 128 | |
dense_2_ID | 256 | |
dense_2_N | 512 | |
dense_2_z | 256 | |
dense_2_b | 128 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.