Table C1.

Hyperparameters used in a CNN architecture trained with noiseless spectra. These values are selected using a Bayesian optimization algorithm.

HyperparametersOptimized value
Data Inputwindow size (ws)259
cnpix5
CNNL20.0
Architecturedropout0.0
conv_filter_1128
conv_filter_2128
conv_filter_3128
conv_kernel_18
conv_kernel_27
conv_kernel_38
dense_1128
dense_2_ID256
dense_2_N512
dense_2_z256
dense_2_b128
HyperparametersOptimized value
Data Inputwindow size (ws)259
cnpix5
CNNL20.0
Architecturedropout0.0
conv_filter_1128
conv_filter_2128
conv_filter_3128
conv_kernel_18
conv_kernel_27
conv_kernel_38
dense_1128
dense_2_ID256
dense_2_N512
dense_2_z256
dense_2_b128
Table C1.

Hyperparameters used in a CNN architecture trained with noiseless spectra. These values are selected using a Bayesian optimization algorithm.

HyperparametersOptimized value
Data Inputwindow size (ws)259
cnpix5
CNNL20.0
Architecturedropout0.0
conv_filter_1128
conv_filter_2128
conv_filter_3128
conv_kernel_18
conv_kernel_27
conv_kernel_38
dense_1128
dense_2_ID256
dense_2_N512
dense_2_z256
dense_2_b128
HyperparametersOptimized value
Data Inputwindow size (ws)259
cnpix5
CNNL20.0
Architecturedropout0.0
conv_filter_1128
conv_filter_2128
conv_filter_3128
conv_kernel_18
conv_kernel_27
conv_kernel_38
dense_1128
dense_2_ID256
dense_2_N512
dense_2_z256
dense_2_b128
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close