Voting results and single model results of eight models on accuracy, precision, specificity, balanced average (F1-score), consistency test index (kappa) and recall; the top 1 of each indicators were marked as bold text
. | Accuracy . | Recall . | Precision . | Specificity . | F1-score . | Kappa . |
---|---|---|---|---|---|---|
Vote_1 | 0.734820 | 0.927357 | 0.690474 | 0.334298 | 0.768811 | 0.257488 |
Vote_2 | 0.756605 | 0.863349 | 0.705754 | 0.457933 | 0.753761 | 0.327965 |
Vote_3 | 0.768086 | 0.824571 | 0.721773 | 0.532612 | 0.746595 | 0.363039 |
Vote_4 | 0.785580 | 0.794663 | 0.720453 | 0.606143 | 0.731923 | 0.395788 |
Vote_5 | 0.784754 | 0.752909 | 0.722685 | 0.683765 | 0.712288 | 0.425853 |
Vote_6 | 0.786689 | 0.706961 | 0.727658 | 0.760024 | 0.691929 | 0.451502 |
Vote_7 | 0.777391 | 0.640642 | 0.730498 | 0.837807 | 0.657155 | 0.442357 |
Vote_8 | 0.727814 | 0.518230 | 0.707729 | 0.923482 | 0.570414 | 0.374407 |
FNN | 0.798308 | 0.791062 | 0.767744 | 0.725392 | 0.760613 | 0.491853 |
KNN | 0.729326 | 0.688061 | 0.700937 | 0.657092 | 0.659602 | 0.320299 |
XGBoost | 0.786030 | 0.803387 | 0.737362 | 0.615127 | 0.744092 | 0.419844 |
NB | 0.720282 | 0.662418 | 0.690309 | 0.643922 | 0.643178 | 0.280391 |
RF | 0.762731 | 0.760221 | 0.690735 | 0.598778 | 0.697785 | 0.353804 |
SVM | 0.765061 | 0.778616 | 0.718526 | 0.581766 | 0.720179 | 0.359531 |
GC | 0.792923 | 0.776271 | 0.728246 | 0.693327 | 0.733131 | 0.445779 |
LSTM | 0.767079 | 0.768647 | 0.726224 | 0.620660 | 0.722073 | 0.386801 |
. | Accuracy . | Recall . | Precision . | Specificity . | F1-score . | Kappa . |
---|---|---|---|---|---|---|
Vote_1 | 0.734820 | 0.927357 | 0.690474 | 0.334298 | 0.768811 | 0.257488 |
Vote_2 | 0.756605 | 0.863349 | 0.705754 | 0.457933 | 0.753761 | 0.327965 |
Vote_3 | 0.768086 | 0.824571 | 0.721773 | 0.532612 | 0.746595 | 0.363039 |
Vote_4 | 0.785580 | 0.794663 | 0.720453 | 0.606143 | 0.731923 | 0.395788 |
Vote_5 | 0.784754 | 0.752909 | 0.722685 | 0.683765 | 0.712288 | 0.425853 |
Vote_6 | 0.786689 | 0.706961 | 0.727658 | 0.760024 | 0.691929 | 0.451502 |
Vote_7 | 0.777391 | 0.640642 | 0.730498 | 0.837807 | 0.657155 | 0.442357 |
Vote_8 | 0.727814 | 0.518230 | 0.707729 | 0.923482 | 0.570414 | 0.374407 |
FNN | 0.798308 | 0.791062 | 0.767744 | 0.725392 | 0.760613 | 0.491853 |
KNN | 0.729326 | 0.688061 | 0.700937 | 0.657092 | 0.659602 | 0.320299 |
XGBoost | 0.786030 | 0.803387 | 0.737362 | 0.615127 | 0.744092 | 0.419844 |
NB | 0.720282 | 0.662418 | 0.690309 | 0.643922 | 0.643178 | 0.280391 |
RF | 0.762731 | 0.760221 | 0.690735 | 0.598778 | 0.697785 | 0.353804 |
SVM | 0.765061 | 0.778616 | 0.718526 | 0.581766 | 0.720179 | 0.359531 |
GC | 0.792923 | 0.776271 | 0.728246 | 0.693327 | 0.733131 | 0.445779 |
LSTM | 0.767079 | 0.768647 | 0.726224 | 0.620660 | 0.722073 | 0.386801 |
Voting results and single model results of eight models on accuracy, precision, specificity, balanced average (F1-score), consistency test index (kappa) and recall; the top 1 of each indicators were marked as bold text
. | Accuracy . | Recall . | Precision . | Specificity . | F1-score . | Kappa . |
---|---|---|---|---|---|---|
Vote_1 | 0.734820 | 0.927357 | 0.690474 | 0.334298 | 0.768811 | 0.257488 |
Vote_2 | 0.756605 | 0.863349 | 0.705754 | 0.457933 | 0.753761 | 0.327965 |
Vote_3 | 0.768086 | 0.824571 | 0.721773 | 0.532612 | 0.746595 | 0.363039 |
Vote_4 | 0.785580 | 0.794663 | 0.720453 | 0.606143 | 0.731923 | 0.395788 |
Vote_5 | 0.784754 | 0.752909 | 0.722685 | 0.683765 | 0.712288 | 0.425853 |
Vote_6 | 0.786689 | 0.706961 | 0.727658 | 0.760024 | 0.691929 | 0.451502 |
Vote_7 | 0.777391 | 0.640642 | 0.730498 | 0.837807 | 0.657155 | 0.442357 |
Vote_8 | 0.727814 | 0.518230 | 0.707729 | 0.923482 | 0.570414 | 0.374407 |
FNN | 0.798308 | 0.791062 | 0.767744 | 0.725392 | 0.760613 | 0.491853 |
KNN | 0.729326 | 0.688061 | 0.700937 | 0.657092 | 0.659602 | 0.320299 |
XGBoost | 0.786030 | 0.803387 | 0.737362 | 0.615127 | 0.744092 | 0.419844 |
NB | 0.720282 | 0.662418 | 0.690309 | 0.643922 | 0.643178 | 0.280391 |
RF | 0.762731 | 0.760221 | 0.690735 | 0.598778 | 0.697785 | 0.353804 |
SVM | 0.765061 | 0.778616 | 0.718526 | 0.581766 | 0.720179 | 0.359531 |
GC | 0.792923 | 0.776271 | 0.728246 | 0.693327 | 0.733131 | 0.445779 |
LSTM | 0.767079 | 0.768647 | 0.726224 | 0.620660 | 0.722073 | 0.386801 |
. | Accuracy . | Recall . | Precision . | Specificity . | F1-score . | Kappa . |
---|---|---|---|---|---|---|
Vote_1 | 0.734820 | 0.927357 | 0.690474 | 0.334298 | 0.768811 | 0.257488 |
Vote_2 | 0.756605 | 0.863349 | 0.705754 | 0.457933 | 0.753761 | 0.327965 |
Vote_3 | 0.768086 | 0.824571 | 0.721773 | 0.532612 | 0.746595 | 0.363039 |
Vote_4 | 0.785580 | 0.794663 | 0.720453 | 0.606143 | 0.731923 | 0.395788 |
Vote_5 | 0.784754 | 0.752909 | 0.722685 | 0.683765 | 0.712288 | 0.425853 |
Vote_6 | 0.786689 | 0.706961 | 0.727658 | 0.760024 | 0.691929 | 0.451502 |
Vote_7 | 0.777391 | 0.640642 | 0.730498 | 0.837807 | 0.657155 | 0.442357 |
Vote_8 | 0.727814 | 0.518230 | 0.707729 | 0.923482 | 0.570414 | 0.374407 |
FNN | 0.798308 | 0.791062 | 0.767744 | 0.725392 | 0.760613 | 0.491853 |
KNN | 0.729326 | 0.688061 | 0.700937 | 0.657092 | 0.659602 | 0.320299 |
XGBoost | 0.786030 | 0.803387 | 0.737362 | 0.615127 | 0.744092 | 0.419844 |
NB | 0.720282 | 0.662418 | 0.690309 | 0.643922 | 0.643178 | 0.280391 |
RF | 0.762731 | 0.760221 | 0.690735 | 0.598778 | 0.697785 | 0.353804 |
SVM | 0.765061 | 0.778616 | 0.718526 | 0.581766 | 0.720179 | 0.359531 |
GC | 0.792923 | 0.776271 | 0.728246 | 0.693327 | 0.733131 | 0.445779 |
LSTM | 0.767079 | 0.768647 | 0.726224 | 0.620660 | 0.722073 | 0.386801 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.