Table 2

Performance comparison with SOTA methods. The best results are in bold font.

MethodYearDataset#DrugsRep.ModelAimingCoverageAccuracyAbsoluteAbsolute
|$\uparrow $||$\uparrow $||$\uparrow $|True |$\uparrow $|False |$\downarrow $|
Chen et al. [4]2012Chen-20123883ISSimilarity Search50.76%75.79%49.38%13.83%8.83%
iATC-mISF[5]2017Chen-20123883ISFML-GKR67.83%67.10%66.41%60.98%5.85%
iATC-mHyb[6]2017Chen-20123883ISFOML-GKR71.91%71.46%71.32%66.75%2.43%
EnsLIFT[7]2017Chen-20123883ISFLIFT78.18%75.77%71.21%63.30%2.85%
EnsANet_LR[9]2018Chen-20123883ISFCNN,LIFT,RR75.40%82.49%75.12%66.68%2.62%
EnsANet_LR|$\otimes $|DO[9]2018Chen-20123883ISFOCNN,LIFT,RR79.57%83.35%77.78%70.90%2.40%
ATC-NLSP[10]2019Chen-20123883ISFNLSP81.35%79.50%78.28%74.97%3.43%
iATC-NRAKEL[11]2020Chen-20123883ISRAKEL,SVM78.88%79.36%77.86%75.93%3.63%
iATC-FRAKEL[12]2020Chen-20123883FRAKEL,SVM78.51%78.40%77.21%75.11%3.70%
FUS3[14]2020Chen-20123883ISFCNN,LSTM,LIFT,RR87.55%69.73%73.46%68.71%2.38%
FUS3|$\otimes $|DO[14]2020Chen-20123883ISFOCNN,LSTM,LIFT,RR79.79%84.22%79.64%73.04%2.09%
iATC_Deep-mISF[13]2020Chen-20123883ISFODNN74.70%73.91%71.57%67.01%0.00%
CGATCPred[15]2021Chen-20123883ISEACNN,GCN81.94%82.88%80.81%76.58%2.75%
EnsATC[18]2022Chen-20123883ISFhMuLab,LSTM91.39%84.32%83.38%80.09%1.31%
ATC-CNN2022Chen-20123883SCNN93.01%90.72%90.53%87.77%1.53%
ATC-CNN2022ATC-SMILES4545SCNN95.83%94.14%93.99%91.77%0.94%
MethodYearDataset#DrugsRep.ModelAimingCoverageAccuracyAbsoluteAbsolute
|$\uparrow $||$\uparrow $||$\uparrow $|True |$\uparrow $|False |$\downarrow $|
Chen et al. [4]2012Chen-20123883ISSimilarity Search50.76%75.79%49.38%13.83%8.83%
iATC-mISF[5]2017Chen-20123883ISFML-GKR67.83%67.10%66.41%60.98%5.85%
iATC-mHyb[6]2017Chen-20123883ISFOML-GKR71.91%71.46%71.32%66.75%2.43%
EnsLIFT[7]2017Chen-20123883ISFLIFT78.18%75.77%71.21%63.30%2.85%
EnsANet_LR[9]2018Chen-20123883ISFCNN,LIFT,RR75.40%82.49%75.12%66.68%2.62%
EnsANet_LR|$\otimes $|DO[9]2018Chen-20123883ISFOCNN,LIFT,RR79.57%83.35%77.78%70.90%2.40%
ATC-NLSP[10]2019Chen-20123883ISFNLSP81.35%79.50%78.28%74.97%3.43%
iATC-NRAKEL[11]2020Chen-20123883ISRAKEL,SVM78.88%79.36%77.86%75.93%3.63%
iATC-FRAKEL[12]2020Chen-20123883FRAKEL,SVM78.51%78.40%77.21%75.11%3.70%
FUS3[14]2020Chen-20123883ISFCNN,LSTM,LIFT,RR87.55%69.73%73.46%68.71%2.38%
FUS3|$\otimes $|DO[14]2020Chen-20123883ISFOCNN,LSTM,LIFT,RR79.79%84.22%79.64%73.04%2.09%
iATC_Deep-mISF[13]2020Chen-20123883ISFODNN74.70%73.91%71.57%67.01%0.00%
CGATCPred[15]2021Chen-20123883ISEACNN,GCN81.94%82.88%80.81%76.58%2.75%
EnsATC[18]2022Chen-20123883ISFhMuLab,LSTM91.39%84.32%83.38%80.09%1.31%
ATC-CNN2022Chen-20123883SCNN93.01%90.72%90.53%87.77%1.53%
ATC-CNN2022ATC-SMILES4545SCNN95.83%94.14%93.99%91.77%0.94%

Representation (Rep.) abbreviations: I - Chemical interactions, S - Chemical structural features, F - Molecular fingerprint features, O - Drug ontology information, E - Pre-trained word embedding, and A - ATC codes association information.

Table 2

Performance comparison with SOTA methods. The best results are in bold font.

MethodYearDataset#DrugsRep.ModelAimingCoverageAccuracyAbsoluteAbsolute
|$\uparrow $||$\uparrow $||$\uparrow $|True |$\uparrow $|False |$\downarrow $|
Chen et al. [4]2012Chen-20123883ISSimilarity Search50.76%75.79%49.38%13.83%8.83%
iATC-mISF[5]2017Chen-20123883ISFML-GKR67.83%67.10%66.41%60.98%5.85%
iATC-mHyb[6]2017Chen-20123883ISFOML-GKR71.91%71.46%71.32%66.75%2.43%
EnsLIFT[7]2017Chen-20123883ISFLIFT78.18%75.77%71.21%63.30%2.85%
EnsANet_LR[9]2018Chen-20123883ISFCNN,LIFT,RR75.40%82.49%75.12%66.68%2.62%
EnsANet_LR|$\otimes $|DO[9]2018Chen-20123883ISFOCNN,LIFT,RR79.57%83.35%77.78%70.90%2.40%
ATC-NLSP[10]2019Chen-20123883ISFNLSP81.35%79.50%78.28%74.97%3.43%
iATC-NRAKEL[11]2020Chen-20123883ISRAKEL,SVM78.88%79.36%77.86%75.93%3.63%
iATC-FRAKEL[12]2020Chen-20123883FRAKEL,SVM78.51%78.40%77.21%75.11%3.70%
FUS3[14]2020Chen-20123883ISFCNN,LSTM,LIFT,RR87.55%69.73%73.46%68.71%2.38%
FUS3|$\otimes $|DO[14]2020Chen-20123883ISFOCNN,LSTM,LIFT,RR79.79%84.22%79.64%73.04%2.09%
iATC_Deep-mISF[13]2020Chen-20123883ISFODNN74.70%73.91%71.57%67.01%0.00%
CGATCPred[15]2021Chen-20123883ISEACNN,GCN81.94%82.88%80.81%76.58%2.75%
EnsATC[18]2022Chen-20123883ISFhMuLab,LSTM91.39%84.32%83.38%80.09%1.31%
ATC-CNN2022Chen-20123883SCNN93.01%90.72%90.53%87.77%1.53%
ATC-CNN2022ATC-SMILES4545SCNN95.83%94.14%93.99%91.77%0.94%
MethodYearDataset#DrugsRep.ModelAimingCoverageAccuracyAbsoluteAbsolute
|$\uparrow $||$\uparrow $||$\uparrow $|True |$\uparrow $|False |$\downarrow $|
Chen et al. [4]2012Chen-20123883ISSimilarity Search50.76%75.79%49.38%13.83%8.83%
iATC-mISF[5]2017Chen-20123883ISFML-GKR67.83%67.10%66.41%60.98%5.85%
iATC-mHyb[6]2017Chen-20123883ISFOML-GKR71.91%71.46%71.32%66.75%2.43%
EnsLIFT[7]2017Chen-20123883ISFLIFT78.18%75.77%71.21%63.30%2.85%
EnsANet_LR[9]2018Chen-20123883ISFCNN,LIFT,RR75.40%82.49%75.12%66.68%2.62%
EnsANet_LR|$\otimes $|DO[9]2018Chen-20123883ISFOCNN,LIFT,RR79.57%83.35%77.78%70.90%2.40%
ATC-NLSP[10]2019Chen-20123883ISFNLSP81.35%79.50%78.28%74.97%3.43%
iATC-NRAKEL[11]2020Chen-20123883ISRAKEL,SVM78.88%79.36%77.86%75.93%3.63%
iATC-FRAKEL[12]2020Chen-20123883FRAKEL,SVM78.51%78.40%77.21%75.11%3.70%
FUS3[14]2020Chen-20123883ISFCNN,LSTM,LIFT,RR87.55%69.73%73.46%68.71%2.38%
FUS3|$\otimes $|DO[14]2020Chen-20123883ISFOCNN,LSTM,LIFT,RR79.79%84.22%79.64%73.04%2.09%
iATC_Deep-mISF[13]2020Chen-20123883ISFODNN74.70%73.91%71.57%67.01%0.00%
CGATCPred[15]2021Chen-20123883ISEACNN,GCN81.94%82.88%80.81%76.58%2.75%
EnsATC[18]2022Chen-20123883ISFhMuLab,LSTM91.39%84.32%83.38%80.09%1.31%
ATC-CNN2022Chen-20123883SCNN93.01%90.72%90.53%87.77%1.53%
ATC-CNN2022ATC-SMILES4545SCNN95.83%94.14%93.99%91.77%0.94%

Representation (Rep.) abbreviations: I - Chemical interactions, S - Chemical structural features, F - Molecular fingerprint features, O - Drug ontology information, E - Pre-trained word embedding, and A - ATC codes association information.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close