Table 1

Notations and explanations

NotationDescription
|$\mathcal{G}=\left (\mathcal{V}, \mathcal{E}, w\right )$|A graph |$\mathcal{G}$| constructed of nodes |$\mathcal{V}$| and edges |$\mathcal{E}$|⁠, with |$w$| denoting the set of edge weights
|$v_{i}$|The |$i$|-th node
|$n$|The number of nodes
|$\rho $|A metapath
|$R$|Edge types
|$\mathcal{A}$|Node types
|$s\left (v_{i},v_{j}|\rho \right )$|The proximity between node |$v_{i}$| and node |$v_{j}$| in path instance |$\rho $|
|$\mathcal{S}=\left \lbrace s_{i}\right \rbrace _{n}^{i=1}$|The herb-protein transfer probability matrix and the input data for the deep autoencoder
|$K$|The number of layers of the deep autoencoder
|$\mathcal{W}^{k}, \hat{\mathcal{W}}^{k}$|The |$k$|-th layer weight matrix of the deep autoencoder
|$b^{k}, \hat{b}^{k}$|The |$k$|-th layer biases
|$\boldsymbol{y}_{i}^{k}$|The |$k$|-th layer hidden representation for |$v_{i}$|
NotationDescription
|$\mathcal{G}=\left (\mathcal{V}, \mathcal{E}, w\right )$|A graph |$\mathcal{G}$| constructed of nodes |$\mathcal{V}$| and edges |$\mathcal{E}$|⁠, with |$w$| denoting the set of edge weights
|$v_{i}$|The |$i$|-th node
|$n$|The number of nodes
|$\rho $|A metapath
|$R$|Edge types
|$\mathcal{A}$|Node types
|$s\left (v_{i},v_{j}|\rho \right )$|The proximity between node |$v_{i}$| and node |$v_{j}$| in path instance |$\rho $|
|$\mathcal{S}=\left \lbrace s_{i}\right \rbrace _{n}^{i=1}$|The herb-protein transfer probability matrix and the input data for the deep autoencoder
|$K$|The number of layers of the deep autoencoder
|$\mathcal{W}^{k}, \hat{\mathcal{W}}^{k}$|The |$k$|-th layer weight matrix of the deep autoencoder
|$b^{k}, \hat{b}^{k}$|The |$k$|-th layer biases
|$\boldsymbol{y}_{i}^{k}$|The |$k$|-th layer hidden representation for |$v_{i}$|
Table 1

Notations and explanations

NotationDescription
|$\mathcal{G}=\left (\mathcal{V}, \mathcal{E}, w\right )$|A graph |$\mathcal{G}$| constructed of nodes |$\mathcal{V}$| and edges |$\mathcal{E}$|⁠, with |$w$| denoting the set of edge weights
|$v_{i}$|The |$i$|-th node
|$n$|The number of nodes
|$\rho $|A metapath
|$R$|Edge types
|$\mathcal{A}$|Node types
|$s\left (v_{i},v_{j}|\rho \right )$|The proximity between node |$v_{i}$| and node |$v_{j}$| in path instance |$\rho $|
|$\mathcal{S}=\left \lbrace s_{i}\right \rbrace _{n}^{i=1}$|The herb-protein transfer probability matrix and the input data for the deep autoencoder
|$K$|The number of layers of the deep autoencoder
|$\mathcal{W}^{k}, \hat{\mathcal{W}}^{k}$|The |$k$|-th layer weight matrix of the deep autoencoder
|$b^{k}, \hat{b}^{k}$|The |$k$|-th layer biases
|$\boldsymbol{y}_{i}^{k}$|The |$k$|-th layer hidden representation for |$v_{i}$|
NotationDescription
|$\mathcal{G}=\left (\mathcal{V}, \mathcal{E}, w\right )$|A graph |$\mathcal{G}$| constructed of nodes |$\mathcal{V}$| and edges |$\mathcal{E}$|⁠, with |$w$| denoting the set of edge weights
|$v_{i}$|The |$i$|-th node
|$n$|The number of nodes
|$\rho $|A metapath
|$R$|Edge types
|$\mathcal{A}$|Node types
|$s\left (v_{i},v_{j}|\rho \right )$|The proximity between node |$v_{i}$| and node |$v_{j}$| in path instance |$\rho $|
|$\mathcal{S}=\left \lbrace s_{i}\right \rbrace _{n}^{i=1}$|The herb-protein transfer probability matrix and the input data for the deep autoencoder
|$K$|The number of layers of the deep autoencoder
|$\mathcal{W}^{k}, \hat{\mathcal{W}}^{k}$|The |$k$|-th layer weight matrix of the deep autoencoder
|$b^{k}, \hat{b}^{k}$|The |$k$|-th layer biases
|$\boldsymbol{y}_{i}^{k}$|The |$k$|-th layer hidden representation for |$v_{i}$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close