. | Leather & textiles . | Metals & machinery . | Food & beverages . | Non-metal products . | Electric products . | Paper & furniture . | Chemicals & pharma . | Other mfg. . |
---|---|---|---|---|---|---|---|---|
. | (1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . |
|$\sigma ^2_{ zd}+\sigma ^2_{ zx}$| | 6.404 | 4.475 | 6.392 | 6.370 | 6.760 | 7.051 | 3.547 | 3.840 |
(0.137) | (0.174) | (0.253) | (0.440) | (0.377) | (0.503) | (0.236) | (0.258) | |
Countries | 29 | 14 | 14 | 4 | 4 | 5 | 5 | 7 |
Observations | 4,368 | 1,327 | 1,277 | 420 | 643 | 393 | 453 | 443 |
. | Leather & textiles . | Metals & machinery . | Food & beverages . | Non-metal products . | Electric products . | Paper & furniture . | Chemicals & pharma . | Other mfg. . |
---|---|---|---|---|---|---|---|---|
. | (1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . |
|$\sigma ^2_{ zd}+\sigma ^2_{ zx}$| | 6.404 | 4.475 | 6.392 | 6.370 | 6.760 | 7.051 | 3.547 | 3.840 |
(0.137) | (0.174) | (0.253) | (0.440) | (0.377) | (0.503) | (0.236) | (0.258) | |
Countries | 29 | 14 | 14 | 4 | 4 | 5 | 5 | 7 |
Observations | 4,368 | 1,327 | 1,277 | 420 | 643 | 393 | 453 | 443 |
Notes. The table reports the maximum likelihood estimate of a single shape parameter for the three distributions of firm-destination-specific revenue shifters conditional on |$s_d/s_x$| being given by (7). Each firm-level export intensity observation is weighted so that each country receives an equal weight in the estimation. The shape parameter is estimated separately for each manufacturing sector. Standard errors are reported in parentheses.
. | Leather & textiles . | Metals & machinery . | Food & beverages . | Non-metal products . | Electric products . | Paper & furniture . | Chemicals & pharma . | Other mfg. . |
---|---|---|---|---|---|---|---|---|
. | (1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . |
|$\sigma ^2_{ zd}+\sigma ^2_{ zx}$| | 6.404 | 4.475 | 6.392 | 6.370 | 6.760 | 7.051 | 3.547 | 3.840 |
(0.137) | (0.174) | (0.253) | (0.440) | (0.377) | (0.503) | (0.236) | (0.258) | |
Countries | 29 | 14 | 14 | 4 | 4 | 5 | 5 | 7 |
Observations | 4,368 | 1,327 | 1,277 | 420 | 643 | 393 | 453 | 443 |
. | Leather & textiles . | Metals & machinery . | Food & beverages . | Non-metal products . | Electric products . | Paper & furniture . | Chemicals & pharma . | Other mfg. . |
---|---|---|---|---|---|---|---|---|
. | (1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . |
|$\sigma ^2_{ zd}+\sigma ^2_{ zx}$| | 6.404 | 4.475 | 6.392 | 6.370 | 6.760 | 7.051 | 3.547 | 3.840 |
(0.137) | (0.174) | (0.253) | (0.440) | (0.377) | (0.503) | (0.236) | (0.258) | |
Countries | 29 | 14 | 14 | 4 | 4 | 5 | 5 | 7 |
Observations | 4,368 | 1,327 | 1,277 | 420 | 643 | 393 | 453 | 443 |
Notes. The table reports the maximum likelihood estimate of a single shape parameter for the three distributions of firm-destination-specific revenue shifters conditional on |$s_d/s_x$| being given by (7). Each firm-level export intensity observation is weighted so that each country receives an equal weight in the estimation. The shape parameter is estimated separately for each manufacturing sector. Standard errors are reported in parentheses.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.