The best-fitting model parameters of the sample as obtained from the broad-band X-ray spectral fitting of the EPIC-pn+MOS data with the model, Tbabs×(relxillDCp+nthComp). The fixed and tied parameters are denoted by symbols ‘(f)’ and ‘*’, respectively. The 90 per cent confidence intervals of parameters are estimated through Monte Carlo simulations. The columns are (1) source name, (2) observation ID, (3) photon index of the primary continuum, (4) Primary continuum normalization in units of photons cm−2 s−1 keV−1, (5) inner emissivity index, (6) BH spin, (7) disc inclination angle, (8) disc ionization parameter, (9) disc density in logarithmic units, (10) normalization of relxillDCp, (11) reflection strength Rs, and (12) fit statistic.
Source . | Obs. ID . | . | . | nthComp . | . | . | . | relxillDCp . | . | . | . |
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | Γ . | Knth . | qin . | a . | θ○ . | |$\log [\frac{\xi }{\rm erg~cm~s^{-1}}]$| . | |$\log [\frac{n_{\rm e}}{{\rm cm^{-3}}}]$| . | Kref . | Rs . | |$\frac{C-\rm {stat}}{\rm {d.o.f}}$| . |
. | . | . | [10−5] . | . | . | . | . | . | [10−6] . | . | . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . | (11) . | (12) . |
J0107 | 0305920101 | |$2.03_{-0.03}^{+0.17}$| | |$5.3_{-4.6}^{+2.0}$| | ≥7.1 | |$0.87_{-0.24}^{+0.08}$| | |$41_{-25}^{+9}$| | |$2.8_{-0.1}^{+0.6}$| | ≥17.8 | |$0.7_{-0.3}^{+0.5}$| | |$1.2_{-0.2}^{+0.2}$| | |$\frac{193.8}{240}$| |
J0228 | 0674810101 | |$1.91_{-0.12}^{+0.45}$| | ≤4.3 | ≥5.6 | |$0.82_{-0.09}^{+0.16}$| | ≤45 | |$2.8_{-0.4}^{+0.2}$| | ≥16.3 | |$1.1_{-0.6}^{+0.5}$| | |$7.7_{-5.8}^{+5.9}$| | |$\frac{82.2}{116}$| |
J0940 | 0306050201 | |$2.06_{-0.07}^{+0.11}$| | ≤14.4 | ≥5.9 | |$0.996_{-0.015}^{+0.001}$| | |$65_{-14}^{+4}$| | |$3.0_{-0.3}^{+0.1}$| | |$16.4_{-1.3}^{+0.9}$| | |$9.5_{-5.2}^{+2.6}$| | ≤33.2 | |$\frac{243.7}{232}$| |
J1023 | 0108670101 | |$2.28_{-0.06}^{+0.08}$| | |$1.7_{-0.9}^{+0.7}$| | ≥4.0 | |$0.53_{-0.15}^{+0.39}$| | |$27_{-8}^{+13}$| | |$3.1_{-0.2}^{+0.3}$| | ≤17.0 | |$0.3_{-0.1}^{+0.1}$| | |$0.9_{-0.2}^{+0.2}$| | |$\frac{586.4}{645}$| |
0605540201 | 2.28* | |$1.5_{-1.4}^{+1.2}$| | − | 0.53* | 27* | 3.1* | − | |$0.6_{-0.2}^{+0.2}$| | |$2.1_{-0.4}^{+0.4}$| | – | |
0605540301 | 2.28* | |$1.4_{-1.0}^{+0.8}$| | − | 0.53* | 27* | 3.1* | − | |$0.3_{-0.1}^{+0.1}$| | |$1.3_{-0.4}^{+0.4}$| | – | |
J1140 | 0305920201 | |$2.04_{-0.03}^{+0.02}$| | |$1.3_{-1.2}^{+0.7}$| | |$6.9_{-0.7}^{+1.3}$| | |$0.975_{-0.016}^{+0.012}$| | |$44_{-9}^{+6}$| | |$2.7_{-0.01}^{+0.06}$| | ≥19.9 | |$2.6_{-0.3}^{+0.4}$| | |$16.0_{-7.0}^{+7.1}$| | |$\frac{1047.5}{1042}$| |
0724840101 | 2.04* | |$1.8_{-0.8}^{+0.4}$| | 6.9* | 0.975* | 44* | 2.7* | – | |$1.1_{-0.1}^{+0.2}$| | |$4.7_{-1.0}^{+1.1}$| | – | |
0724840301 | 2.04* | |$2.4_{-1.4}^{+0.6}$| | 6.9* | 0.975* | 44* | 2.7* | – | |$2.2_{-0.2}^{+0.4}$| | |$7.4_{-1.5}^{+1.6}$| | – | |
J1347 | 0744220701 | |$2.33_{-0.07}^{+0.07}$| | |$15.5_{-2.1}^{+2.7}$| | |$5.3_{-2.1}^{+4.0}$| | |$0.77_{-0.43}^{+0.19}$| | |$34_{-13}^{+19}$| | |$1.7_{-0.6}^{+0.5}$| | |$17.0_{-1.5}^{+0.8}$| | |$5.0_{-2.0}^{+1.4}$| | |$0.44_{-0.05}^{+0.05}$| | |$\frac{296.6}{302}$| |
J1357 | 0305920601 | |$2.31_{-0.07}^{+0.05}$| | |$14.8_{-1.5}^{+1.0}$| | ≥4.7 | |$0.35_{-0.09}^{+0.15}$| | |$34_{-11}^{+15}$| | |$1.3_{-0.1}^{+0.1}$| | ≤17.6 | |$3.6_{-1.6}^{+2.4}$| | |$0.22_{-0.04}^{+0.04}$| | |$\frac{169.8}{178}$| |
J1434 | 0305920401 | |$2.10_{-0.15}^{+0.20}$| | |$4.9_{-0.4}^{+0.2}$| | ≥4.5 | |$0.63_{-0.45}^{+0.27}$| | |$48_{-26}^{+16}$| | ≤0.7 | ≤17.0 | |$3.4_{-1.8}^{+0.3}$| | |$0.25_{-0.09}^{+0.09}$| | |$\frac{215.7}{224}$| |
0674810501 | 2.10* | |$5.1_{-0.5}^{+0.3}$| | − | 0.63* | 48* | − | − | |$4.0_{-2.3}^{+2.2}$| | |$0.28_{-0.11}^{+0.12}$| | – | |
J1541 | 0744220401 | |$1.94_{-0.12}^{+0.13}$| | |$9.1_{-1.6}^{+1.7}$| | |$8.7_{-3.1}^{+1.2}$| | |$0.91_{-0.21}^{+0.07}$| | |$43_{-11}^{+11}$| | |$2.0_{-1.6}^{+0.8}$| | |$18.0_{-0.7}^{+0.7}$| | |$2.2_{-1.4}^{+1.8}$| | |$0.36_{-0.08}^{+0.09}$| | |$\frac{160.1}{177}$| |
J1626 | 0674811001 | |$1.75_{-0.13}^{+0.31}$| | |$2.9_{-1.2}^{+0.6}$| | ≥3.7 | |$0.68_{-0.21}^{+0.28}$| | |$27_{-11}^{+14}$| | |$2.0_{-1.6}^{+0.8}$| | ≤19.1 | |$1.0_{-0.6}^{+1.8}$| | |$0.4_{-0.1}^{+0.1}$| | |$\frac{92.5}{73}$| |
J1631 | 0674810601 | |$1.96_{-0.15}^{+0.13}$| | |$1.5_{-0.2}^{+0.6}$| | ≥3.9 | |$0.74_{-0.19}^{+0.16}$| | |$26_{-8}^{+9}$| | |$2.3_{-0.8}^{+0.5}$| | ≤18.1 | |$1.0_{-0.8}^{+0.3}$| | |$0.9_{-0.4}^{+0.4}$| | |$\frac{38.9}{62}$| |
Source . | Obs. ID . | . | . | nthComp . | . | . | . | relxillDCp . | . | . | . |
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | Γ . | Knth . | qin . | a . | θ○ . | |$\log [\frac{\xi }{\rm erg~cm~s^{-1}}]$| . | |$\log [\frac{n_{\rm e}}{{\rm cm^{-3}}}]$| . | Kref . | Rs . | |$\frac{C-\rm {stat}}{\rm {d.o.f}}$| . |
. | . | . | [10−5] . | . | . | . | . | . | [10−6] . | . | . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . | (11) . | (12) . |
J0107 | 0305920101 | |$2.03_{-0.03}^{+0.17}$| | |$5.3_{-4.6}^{+2.0}$| | ≥7.1 | |$0.87_{-0.24}^{+0.08}$| | |$41_{-25}^{+9}$| | |$2.8_{-0.1}^{+0.6}$| | ≥17.8 | |$0.7_{-0.3}^{+0.5}$| | |$1.2_{-0.2}^{+0.2}$| | |$\frac{193.8}{240}$| |
J0228 | 0674810101 | |$1.91_{-0.12}^{+0.45}$| | ≤4.3 | ≥5.6 | |$0.82_{-0.09}^{+0.16}$| | ≤45 | |$2.8_{-0.4}^{+0.2}$| | ≥16.3 | |$1.1_{-0.6}^{+0.5}$| | |$7.7_{-5.8}^{+5.9}$| | |$\frac{82.2}{116}$| |
J0940 | 0306050201 | |$2.06_{-0.07}^{+0.11}$| | ≤14.4 | ≥5.9 | |$0.996_{-0.015}^{+0.001}$| | |$65_{-14}^{+4}$| | |$3.0_{-0.3}^{+0.1}$| | |$16.4_{-1.3}^{+0.9}$| | |$9.5_{-5.2}^{+2.6}$| | ≤33.2 | |$\frac{243.7}{232}$| |
J1023 | 0108670101 | |$2.28_{-0.06}^{+0.08}$| | |$1.7_{-0.9}^{+0.7}$| | ≥4.0 | |$0.53_{-0.15}^{+0.39}$| | |$27_{-8}^{+13}$| | |$3.1_{-0.2}^{+0.3}$| | ≤17.0 | |$0.3_{-0.1}^{+0.1}$| | |$0.9_{-0.2}^{+0.2}$| | |$\frac{586.4}{645}$| |
0605540201 | 2.28* | |$1.5_{-1.4}^{+1.2}$| | − | 0.53* | 27* | 3.1* | − | |$0.6_{-0.2}^{+0.2}$| | |$2.1_{-0.4}^{+0.4}$| | – | |
0605540301 | 2.28* | |$1.4_{-1.0}^{+0.8}$| | − | 0.53* | 27* | 3.1* | − | |$0.3_{-0.1}^{+0.1}$| | |$1.3_{-0.4}^{+0.4}$| | – | |
J1140 | 0305920201 | |$2.04_{-0.03}^{+0.02}$| | |$1.3_{-1.2}^{+0.7}$| | |$6.9_{-0.7}^{+1.3}$| | |$0.975_{-0.016}^{+0.012}$| | |$44_{-9}^{+6}$| | |$2.7_{-0.01}^{+0.06}$| | ≥19.9 | |$2.6_{-0.3}^{+0.4}$| | |$16.0_{-7.0}^{+7.1}$| | |$\frac{1047.5}{1042}$| |
0724840101 | 2.04* | |$1.8_{-0.8}^{+0.4}$| | 6.9* | 0.975* | 44* | 2.7* | – | |$1.1_{-0.1}^{+0.2}$| | |$4.7_{-1.0}^{+1.1}$| | – | |
0724840301 | 2.04* | |$2.4_{-1.4}^{+0.6}$| | 6.9* | 0.975* | 44* | 2.7* | – | |$2.2_{-0.2}^{+0.4}$| | |$7.4_{-1.5}^{+1.6}$| | – | |
J1347 | 0744220701 | |$2.33_{-0.07}^{+0.07}$| | |$15.5_{-2.1}^{+2.7}$| | |$5.3_{-2.1}^{+4.0}$| | |$0.77_{-0.43}^{+0.19}$| | |$34_{-13}^{+19}$| | |$1.7_{-0.6}^{+0.5}$| | |$17.0_{-1.5}^{+0.8}$| | |$5.0_{-2.0}^{+1.4}$| | |$0.44_{-0.05}^{+0.05}$| | |$\frac{296.6}{302}$| |
J1357 | 0305920601 | |$2.31_{-0.07}^{+0.05}$| | |$14.8_{-1.5}^{+1.0}$| | ≥4.7 | |$0.35_{-0.09}^{+0.15}$| | |$34_{-11}^{+15}$| | |$1.3_{-0.1}^{+0.1}$| | ≤17.6 | |$3.6_{-1.6}^{+2.4}$| | |$0.22_{-0.04}^{+0.04}$| | |$\frac{169.8}{178}$| |
J1434 | 0305920401 | |$2.10_{-0.15}^{+0.20}$| | |$4.9_{-0.4}^{+0.2}$| | ≥4.5 | |$0.63_{-0.45}^{+0.27}$| | |$48_{-26}^{+16}$| | ≤0.7 | ≤17.0 | |$3.4_{-1.8}^{+0.3}$| | |$0.25_{-0.09}^{+0.09}$| | |$\frac{215.7}{224}$| |
0674810501 | 2.10* | |$5.1_{-0.5}^{+0.3}$| | − | 0.63* | 48* | − | − | |$4.0_{-2.3}^{+2.2}$| | |$0.28_{-0.11}^{+0.12}$| | – | |
J1541 | 0744220401 | |$1.94_{-0.12}^{+0.13}$| | |$9.1_{-1.6}^{+1.7}$| | |$8.7_{-3.1}^{+1.2}$| | |$0.91_{-0.21}^{+0.07}$| | |$43_{-11}^{+11}$| | |$2.0_{-1.6}^{+0.8}$| | |$18.0_{-0.7}^{+0.7}$| | |$2.2_{-1.4}^{+1.8}$| | |$0.36_{-0.08}^{+0.09}$| | |$\frac{160.1}{177}$| |
J1626 | 0674811001 | |$1.75_{-0.13}^{+0.31}$| | |$2.9_{-1.2}^{+0.6}$| | ≥3.7 | |$0.68_{-0.21}^{+0.28}$| | |$27_{-11}^{+14}$| | |$2.0_{-1.6}^{+0.8}$| | ≤19.1 | |$1.0_{-0.6}^{+1.8}$| | |$0.4_{-0.1}^{+0.1}$| | |$\frac{92.5}{73}$| |
J1631 | 0674810601 | |$1.96_{-0.15}^{+0.13}$| | |$1.5_{-0.2}^{+0.6}$| | ≥3.9 | |$0.74_{-0.19}^{+0.16}$| | |$26_{-8}^{+9}$| | |$2.3_{-0.8}^{+0.5}$| | ≤18.1 | |$1.0_{-0.8}^{+0.3}$| | |$0.9_{-0.4}^{+0.4}$| | |$\frac{38.9}{62}$| |
The best-fitting model parameters of the sample as obtained from the broad-band X-ray spectral fitting of the EPIC-pn+MOS data with the model, Tbabs×(relxillDCp+nthComp). The fixed and tied parameters are denoted by symbols ‘(f)’ and ‘*’, respectively. The 90 per cent confidence intervals of parameters are estimated through Monte Carlo simulations. The columns are (1) source name, (2) observation ID, (3) photon index of the primary continuum, (4) Primary continuum normalization in units of photons cm−2 s−1 keV−1, (5) inner emissivity index, (6) BH spin, (7) disc inclination angle, (8) disc ionization parameter, (9) disc density in logarithmic units, (10) normalization of relxillDCp, (11) reflection strength Rs, and (12) fit statistic.
Source . | Obs. ID . | . | . | nthComp . | . | . | . | relxillDCp . | . | . | . |
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | Γ . | Knth . | qin . | a . | θ○ . | |$\log [\frac{\xi }{\rm erg~cm~s^{-1}}]$| . | |$\log [\frac{n_{\rm e}}{{\rm cm^{-3}}}]$| . | Kref . | Rs . | |$\frac{C-\rm {stat}}{\rm {d.o.f}}$| . |
. | . | . | [10−5] . | . | . | . | . | . | [10−6] . | . | . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . | (11) . | (12) . |
J0107 | 0305920101 | |$2.03_{-0.03}^{+0.17}$| | |$5.3_{-4.6}^{+2.0}$| | ≥7.1 | |$0.87_{-0.24}^{+0.08}$| | |$41_{-25}^{+9}$| | |$2.8_{-0.1}^{+0.6}$| | ≥17.8 | |$0.7_{-0.3}^{+0.5}$| | |$1.2_{-0.2}^{+0.2}$| | |$\frac{193.8}{240}$| |
J0228 | 0674810101 | |$1.91_{-0.12}^{+0.45}$| | ≤4.3 | ≥5.6 | |$0.82_{-0.09}^{+0.16}$| | ≤45 | |$2.8_{-0.4}^{+0.2}$| | ≥16.3 | |$1.1_{-0.6}^{+0.5}$| | |$7.7_{-5.8}^{+5.9}$| | |$\frac{82.2}{116}$| |
J0940 | 0306050201 | |$2.06_{-0.07}^{+0.11}$| | ≤14.4 | ≥5.9 | |$0.996_{-0.015}^{+0.001}$| | |$65_{-14}^{+4}$| | |$3.0_{-0.3}^{+0.1}$| | |$16.4_{-1.3}^{+0.9}$| | |$9.5_{-5.2}^{+2.6}$| | ≤33.2 | |$\frac{243.7}{232}$| |
J1023 | 0108670101 | |$2.28_{-0.06}^{+0.08}$| | |$1.7_{-0.9}^{+0.7}$| | ≥4.0 | |$0.53_{-0.15}^{+0.39}$| | |$27_{-8}^{+13}$| | |$3.1_{-0.2}^{+0.3}$| | ≤17.0 | |$0.3_{-0.1}^{+0.1}$| | |$0.9_{-0.2}^{+0.2}$| | |$\frac{586.4}{645}$| |
0605540201 | 2.28* | |$1.5_{-1.4}^{+1.2}$| | − | 0.53* | 27* | 3.1* | − | |$0.6_{-0.2}^{+0.2}$| | |$2.1_{-0.4}^{+0.4}$| | – | |
0605540301 | 2.28* | |$1.4_{-1.0}^{+0.8}$| | − | 0.53* | 27* | 3.1* | − | |$0.3_{-0.1}^{+0.1}$| | |$1.3_{-0.4}^{+0.4}$| | – | |
J1140 | 0305920201 | |$2.04_{-0.03}^{+0.02}$| | |$1.3_{-1.2}^{+0.7}$| | |$6.9_{-0.7}^{+1.3}$| | |$0.975_{-0.016}^{+0.012}$| | |$44_{-9}^{+6}$| | |$2.7_{-0.01}^{+0.06}$| | ≥19.9 | |$2.6_{-0.3}^{+0.4}$| | |$16.0_{-7.0}^{+7.1}$| | |$\frac{1047.5}{1042}$| |
0724840101 | 2.04* | |$1.8_{-0.8}^{+0.4}$| | 6.9* | 0.975* | 44* | 2.7* | – | |$1.1_{-0.1}^{+0.2}$| | |$4.7_{-1.0}^{+1.1}$| | – | |
0724840301 | 2.04* | |$2.4_{-1.4}^{+0.6}$| | 6.9* | 0.975* | 44* | 2.7* | – | |$2.2_{-0.2}^{+0.4}$| | |$7.4_{-1.5}^{+1.6}$| | – | |
J1347 | 0744220701 | |$2.33_{-0.07}^{+0.07}$| | |$15.5_{-2.1}^{+2.7}$| | |$5.3_{-2.1}^{+4.0}$| | |$0.77_{-0.43}^{+0.19}$| | |$34_{-13}^{+19}$| | |$1.7_{-0.6}^{+0.5}$| | |$17.0_{-1.5}^{+0.8}$| | |$5.0_{-2.0}^{+1.4}$| | |$0.44_{-0.05}^{+0.05}$| | |$\frac{296.6}{302}$| |
J1357 | 0305920601 | |$2.31_{-0.07}^{+0.05}$| | |$14.8_{-1.5}^{+1.0}$| | ≥4.7 | |$0.35_{-0.09}^{+0.15}$| | |$34_{-11}^{+15}$| | |$1.3_{-0.1}^{+0.1}$| | ≤17.6 | |$3.6_{-1.6}^{+2.4}$| | |$0.22_{-0.04}^{+0.04}$| | |$\frac{169.8}{178}$| |
J1434 | 0305920401 | |$2.10_{-0.15}^{+0.20}$| | |$4.9_{-0.4}^{+0.2}$| | ≥4.5 | |$0.63_{-0.45}^{+0.27}$| | |$48_{-26}^{+16}$| | ≤0.7 | ≤17.0 | |$3.4_{-1.8}^{+0.3}$| | |$0.25_{-0.09}^{+0.09}$| | |$\frac{215.7}{224}$| |
0674810501 | 2.10* | |$5.1_{-0.5}^{+0.3}$| | − | 0.63* | 48* | − | − | |$4.0_{-2.3}^{+2.2}$| | |$0.28_{-0.11}^{+0.12}$| | – | |
J1541 | 0744220401 | |$1.94_{-0.12}^{+0.13}$| | |$9.1_{-1.6}^{+1.7}$| | |$8.7_{-3.1}^{+1.2}$| | |$0.91_{-0.21}^{+0.07}$| | |$43_{-11}^{+11}$| | |$2.0_{-1.6}^{+0.8}$| | |$18.0_{-0.7}^{+0.7}$| | |$2.2_{-1.4}^{+1.8}$| | |$0.36_{-0.08}^{+0.09}$| | |$\frac{160.1}{177}$| |
J1626 | 0674811001 | |$1.75_{-0.13}^{+0.31}$| | |$2.9_{-1.2}^{+0.6}$| | ≥3.7 | |$0.68_{-0.21}^{+0.28}$| | |$27_{-11}^{+14}$| | |$2.0_{-1.6}^{+0.8}$| | ≤19.1 | |$1.0_{-0.6}^{+1.8}$| | |$0.4_{-0.1}^{+0.1}$| | |$\frac{92.5}{73}$| |
J1631 | 0674810601 | |$1.96_{-0.15}^{+0.13}$| | |$1.5_{-0.2}^{+0.6}$| | ≥3.9 | |$0.74_{-0.19}^{+0.16}$| | |$26_{-8}^{+9}$| | |$2.3_{-0.8}^{+0.5}$| | ≤18.1 | |$1.0_{-0.8}^{+0.3}$| | |$0.9_{-0.4}^{+0.4}$| | |$\frac{38.9}{62}$| |
Source . | Obs. ID . | . | . | nthComp . | . | . | . | relxillDCp . | . | . | . |
---|---|---|---|---|---|---|---|---|---|---|---|
. | . | Γ . | Knth . | qin . | a . | θ○ . | |$\log [\frac{\xi }{\rm erg~cm~s^{-1}}]$| . | |$\log [\frac{n_{\rm e}}{{\rm cm^{-3}}}]$| . | Kref . | Rs . | |$\frac{C-\rm {stat}}{\rm {d.o.f}}$| . |
. | . | . | [10−5] . | . | . | . | . | . | [10−6] . | . | . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . | (11) . | (12) . |
J0107 | 0305920101 | |$2.03_{-0.03}^{+0.17}$| | |$5.3_{-4.6}^{+2.0}$| | ≥7.1 | |$0.87_{-0.24}^{+0.08}$| | |$41_{-25}^{+9}$| | |$2.8_{-0.1}^{+0.6}$| | ≥17.8 | |$0.7_{-0.3}^{+0.5}$| | |$1.2_{-0.2}^{+0.2}$| | |$\frac{193.8}{240}$| |
J0228 | 0674810101 | |$1.91_{-0.12}^{+0.45}$| | ≤4.3 | ≥5.6 | |$0.82_{-0.09}^{+0.16}$| | ≤45 | |$2.8_{-0.4}^{+0.2}$| | ≥16.3 | |$1.1_{-0.6}^{+0.5}$| | |$7.7_{-5.8}^{+5.9}$| | |$\frac{82.2}{116}$| |
J0940 | 0306050201 | |$2.06_{-0.07}^{+0.11}$| | ≤14.4 | ≥5.9 | |$0.996_{-0.015}^{+0.001}$| | |$65_{-14}^{+4}$| | |$3.0_{-0.3}^{+0.1}$| | |$16.4_{-1.3}^{+0.9}$| | |$9.5_{-5.2}^{+2.6}$| | ≤33.2 | |$\frac{243.7}{232}$| |
J1023 | 0108670101 | |$2.28_{-0.06}^{+0.08}$| | |$1.7_{-0.9}^{+0.7}$| | ≥4.0 | |$0.53_{-0.15}^{+0.39}$| | |$27_{-8}^{+13}$| | |$3.1_{-0.2}^{+0.3}$| | ≤17.0 | |$0.3_{-0.1}^{+0.1}$| | |$0.9_{-0.2}^{+0.2}$| | |$\frac{586.4}{645}$| |
0605540201 | 2.28* | |$1.5_{-1.4}^{+1.2}$| | − | 0.53* | 27* | 3.1* | − | |$0.6_{-0.2}^{+0.2}$| | |$2.1_{-0.4}^{+0.4}$| | – | |
0605540301 | 2.28* | |$1.4_{-1.0}^{+0.8}$| | − | 0.53* | 27* | 3.1* | − | |$0.3_{-0.1}^{+0.1}$| | |$1.3_{-0.4}^{+0.4}$| | – | |
J1140 | 0305920201 | |$2.04_{-0.03}^{+0.02}$| | |$1.3_{-1.2}^{+0.7}$| | |$6.9_{-0.7}^{+1.3}$| | |$0.975_{-0.016}^{+0.012}$| | |$44_{-9}^{+6}$| | |$2.7_{-0.01}^{+0.06}$| | ≥19.9 | |$2.6_{-0.3}^{+0.4}$| | |$16.0_{-7.0}^{+7.1}$| | |$\frac{1047.5}{1042}$| |
0724840101 | 2.04* | |$1.8_{-0.8}^{+0.4}$| | 6.9* | 0.975* | 44* | 2.7* | – | |$1.1_{-0.1}^{+0.2}$| | |$4.7_{-1.0}^{+1.1}$| | – | |
0724840301 | 2.04* | |$2.4_{-1.4}^{+0.6}$| | 6.9* | 0.975* | 44* | 2.7* | – | |$2.2_{-0.2}^{+0.4}$| | |$7.4_{-1.5}^{+1.6}$| | – | |
J1347 | 0744220701 | |$2.33_{-0.07}^{+0.07}$| | |$15.5_{-2.1}^{+2.7}$| | |$5.3_{-2.1}^{+4.0}$| | |$0.77_{-0.43}^{+0.19}$| | |$34_{-13}^{+19}$| | |$1.7_{-0.6}^{+0.5}$| | |$17.0_{-1.5}^{+0.8}$| | |$5.0_{-2.0}^{+1.4}$| | |$0.44_{-0.05}^{+0.05}$| | |$\frac{296.6}{302}$| |
J1357 | 0305920601 | |$2.31_{-0.07}^{+0.05}$| | |$14.8_{-1.5}^{+1.0}$| | ≥4.7 | |$0.35_{-0.09}^{+0.15}$| | |$34_{-11}^{+15}$| | |$1.3_{-0.1}^{+0.1}$| | ≤17.6 | |$3.6_{-1.6}^{+2.4}$| | |$0.22_{-0.04}^{+0.04}$| | |$\frac{169.8}{178}$| |
J1434 | 0305920401 | |$2.10_{-0.15}^{+0.20}$| | |$4.9_{-0.4}^{+0.2}$| | ≥4.5 | |$0.63_{-0.45}^{+0.27}$| | |$48_{-26}^{+16}$| | ≤0.7 | ≤17.0 | |$3.4_{-1.8}^{+0.3}$| | |$0.25_{-0.09}^{+0.09}$| | |$\frac{215.7}{224}$| |
0674810501 | 2.10* | |$5.1_{-0.5}^{+0.3}$| | − | 0.63* | 48* | − | − | |$4.0_{-2.3}^{+2.2}$| | |$0.28_{-0.11}^{+0.12}$| | – | |
J1541 | 0744220401 | |$1.94_{-0.12}^{+0.13}$| | |$9.1_{-1.6}^{+1.7}$| | |$8.7_{-3.1}^{+1.2}$| | |$0.91_{-0.21}^{+0.07}$| | |$43_{-11}^{+11}$| | |$2.0_{-1.6}^{+0.8}$| | |$18.0_{-0.7}^{+0.7}$| | |$2.2_{-1.4}^{+1.8}$| | |$0.36_{-0.08}^{+0.09}$| | |$\frac{160.1}{177}$| |
J1626 | 0674811001 | |$1.75_{-0.13}^{+0.31}$| | |$2.9_{-1.2}^{+0.6}$| | ≥3.7 | |$0.68_{-0.21}^{+0.28}$| | |$27_{-11}^{+14}$| | |$2.0_{-1.6}^{+0.8}$| | ≤19.1 | |$1.0_{-0.6}^{+1.8}$| | |$0.4_{-0.1}^{+0.1}$| | |$\frac{92.5}{73}$| |
J1631 | 0674810601 | |$1.96_{-0.15}^{+0.13}$| | |$1.5_{-0.2}^{+0.6}$| | ≥3.9 | |$0.74_{-0.19}^{+0.16}$| | |$26_{-8}^{+9}$| | |$2.3_{-0.8}^{+0.5}$| | ≤18.1 | |$1.0_{-0.8}^{+0.3}$| | |$0.9_{-0.4}^{+0.4}$| | |$\frac{38.9}{62}$| |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.