Neural network hyperparameters. We specify the types of layers and the hyperparameters used when defining each layer. ‘NN’ indicates the number of neurons and ‘Activ.’ indicates the activation function used.
Dense Branch A . | Convolutional Branch B . | Interpretation Stage . | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Layer . | Size . | NN . | Activ. . | Layer . | Size . | Filters . | Kernel . | Stride . | Activ. . | Layer . | NN . | Rate . | Activ. . |
Input | [9,1] | – | – | Input | [11,150,1] | – | – | – | – | Concat. | – | – | – |
Dense | [64] | ReLU | Conv2D | – | [16] | [3,7] | [1,1] | ReLU | Dense | [64] | – | ReLU | |
Dense | [32] | ReLU | Conv2D | – | [16] | [3,7] | [1,1] | ReLU | Dense | [32] | – | ReLU | |
Flatten | – | – | – | Max-Pooling | [1,7] | – | – | – | – | Dropout | – | 0.75 | – |
Conv2D | – | [16] | [3,19] | [1,1] | ReLU | Dense | [1] | – | Sigmoid | ||||
Conv2D | – | [16] | [3,19] | [1,1] | ReLU | ||||||||
Global | – | – | – | – | – | ||||||||
Avg-Pooling |
Dense Branch A . | Convolutional Branch B . | Interpretation Stage . | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Layer . | Size . | NN . | Activ. . | Layer . | Size . | Filters . | Kernel . | Stride . | Activ. . | Layer . | NN . | Rate . | Activ. . |
Input | [9,1] | – | – | Input | [11,150,1] | – | – | – | – | Concat. | – | – | – |
Dense | [64] | ReLU | Conv2D | – | [16] | [3,7] | [1,1] | ReLU | Dense | [64] | – | ReLU | |
Dense | [32] | ReLU | Conv2D | – | [16] | [3,7] | [1,1] | ReLU | Dense | [32] | – | ReLU | |
Flatten | – | – | – | Max-Pooling | [1,7] | – | – | – | – | Dropout | – | 0.75 | – |
Conv2D | – | [16] | [3,19] | [1,1] | ReLU | Dense | [1] | – | Sigmoid | ||||
Conv2D | – | [16] | [3,19] | [1,1] | ReLU | ||||||||
Global | – | – | – | – | – | ||||||||
Avg-Pooling |
Neural network hyperparameters. We specify the types of layers and the hyperparameters used when defining each layer. ‘NN’ indicates the number of neurons and ‘Activ.’ indicates the activation function used.
Dense Branch A . | Convolutional Branch B . | Interpretation Stage . | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Layer . | Size . | NN . | Activ. . | Layer . | Size . | Filters . | Kernel . | Stride . | Activ. . | Layer . | NN . | Rate . | Activ. . |
Input | [9,1] | – | – | Input | [11,150,1] | – | – | – | – | Concat. | – | – | – |
Dense | [64] | ReLU | Conv2D | – | [16] | [3,7] | [1,1] | ReLU | Dense | [64] | – | ReLU | |
Dense | [32] | ReLU | Conv2D | – | [16] | [3,7] | [1,1] | ReLU | Dense | [32] | – | ReLU | |
Flatten | – | – | – | Max-Pooling | [1,7] | – | – | – | – | Dropout | – | 0.75 | – |
Conv2D | – | [16] | [3,19] | [1,1] | ReLU | Dense | [1] | – | Sigmoid | ||||
Conv2D | – | [16] | [3,19] | [1,1] | ReLU | ||||||||
Global | – | – | – | – | – | ||||||||
Avg-Pooling |
Dense Branch A . | Convolutional Branch B . | Interpretation Stage . | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Layer . | Size . | NN . | Activ. . | Layer . | Size . | Filters . | Kernel . | Stride . | Activ. . | Layer . | NN . | Rate . | Activ. . |
Input | [9,1] | – | – | Input | [11,150,1] | – | – | – | – | Concat. | – | – | – |
Dense | [64] | ReLU | Conv2D | – | [16] | [3,7] | [1,1] | ReLU | Dense | [64] | – | ReLU | |
Dense | [32] | ReLU | Conv2D | – | [16] | [3,7] | [1,1] | ReLU | Dense | [32] | – | ReLU | |
Flatten | – | – | – | Max-Pooling | [1,7] | – | – | – | – | Dropout | – | 0.75 | – |
Conv2D | – | [16] | [3,19] | [1,1] | ReLU | Dense | [1] | – | Sigmoid | ||||
Conv2D | – | [16] | [3,19] | [1,1] | ReLU | ||||||||
Global | – | – | – | – | – | ||||||||
Avg-Pooling |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.