Evaluation of a-priori Gaussian tension for controlled shifts in (σ8 and Ωm). The δθ by whose half-integer value we are shifting these parameters is referring to their respective 1D marginalized posterior as in equation (2). See equation (4) for the explanation how we convert these shifts into the “number of sigmas” in the full parameter space, shown in the second column.
Evaluation of a priori Gaussian tension . | |
---|---|
(Ωm, σ8) shift . | full-par-space N-σ . |
|$\Delta \sigma _8 = -0.5\, \times \delta \sigma _8$| | |$0.02\, \sigma$| |
|$\Delta \Omega _{\rm m} = +0.5\, \times \delta \Omega _{\rm m}$| | |$0.09\, \sigma$| |
|$\Delta \sigma _8 = -1\, \times \delta \sigma _8$| | |$0.4\, \sigma$| |
|$\Delta \Omega _{\rm m} = +1\, \times \delta \Omega _{\rm m}$| | |$1.0\, \sigma$| |
|$\Delta \sigma _8 = -1.5\, \times \delta \sigma _8$| | |$1.1\, \sigma$| |
|$\Delta \Omega _{\rm m} = +1.5\, \times \delta \Omega _{\rm m}$| | |$2.3\, \sigma$| |
|$\Delta \sigma _8 = -2\, \times \delta \sigma _8$| | |$2.0\, \sigma$| |
|$\Delta \Omega _{\rm m} = +2\, \times \delta \Omega _{\rm m}$| | |$3.8\, \sigma$| |
|$\Delta \sigma _8 = -3\, \times \delta \sigma _8$| | |$3.7\, \sigma$| |
|$\Delta \Omega _{\rm m} = +3\, \times \delta \Omega _{\rm m}$| | |$\gt 5 \, \sigma$| |
|$\Delta \sigma _8 = -5\, \times \delta \sigma _8$| | |$\gt 5 \, \sigma$| |
|$\Delta \Omega _{\rm m} = +5\, \times \delta \Omega _{\rm m}$| | |$\gt 5 \, \sigma$| |
Evaluation of a priori Gaussian tension . | |
---|---|
(Ωm, σ8) shift . | full-par-space N-σ . |
|$\Delta \sigma _8 = -0.5\, \times \delta \sigma _8$| | |$0.02\, \sigma$| |
|$\Delta \Omega _{\rm m} = +0.5\, \times \delta \Omega _{\rm m}$| | |$0.09\, \sigma$| |
|$\Delta \sigma _8 = -1\, \times \delta \sigma _8$| | |$0.4\, \sigma$| |
|$\Delta \Omega _{\rm m} = +1\, \times \delta \Omega _{\rm m}$| | |$1.0\, \sigma$| |
|$\Delta \sigma _8 = -1.5\, \times \delta \sigma _8$| | |$1.1\, \sigma$| |
|$\Delta \Omega _{\rm m} = +1.5\, \times \delta \Omega _{\rm m}$| | |$2.3\, \sigma$| |
|$\Delta \sigma _8 = -2\, \times \delta \sigma _8$| | |$2.0\, \sigma$| |
|$\Delta \Omega _{\rm m} = +2\, \times \delta \Omega _{\rm m}$| | |$3.8\, \sigma$| |
|$\Delta \sigma _8 = -3\, \times \delta \sigma _8$| | |$3.7\, \sigma$| |
|$\Delta \Omega _{\rm m} = +3\, \times \delta \Omega _{\rm m}$| | |$\gt 5 \, \sigma$| |
|$\Delta \sigma _8 = -5\, \times \delta \sigma _8$| | |$\gt 5 \, \sigma$| |
|$\Delta \Omega _{\rm m} = +5\, \times \delta \Omega _{\rm m}$| | |$\gt 5 \, \sigma$| |
Evaluation of a-priori Gaussian tension for controlled shifts in (σ8 and Ωm). The δθ by whose half-integer value we are shifting these parameters is referring to their respective 1D marginalized posterior as in equation (2). See equation (4) for the explanation how we convert these shifts into the “number of sigmas” in the full parameter space, shown in the second column.
Evaluation of a priori Gaussian tension . | |
---|---|
(Ωm, σ8) shift . | full-par-space N-σ . |
|$\Delta \sigma _8 = -0.5\, \times \delta \sigma _8$| | |$0.02\, \sigma$| |
|$\Delta \Omega _{\rm m} = +0.5\, \times \delta \Omega _{\rm m}$| | |$0.09\, \sigma$| |
|$\Delta \sigma _8 = -1\, \times \delta \sigma _8$| | |$0.4\, \sigma$| |
|$\Delta \Omega _{\rm m} = +1\, \times \delta \Omega _{\rm m}$| | |$1.0\, \sigma$| |
|$\Delta \sigma _8 = -1.5\, \times \delta \sigma _8$| | |$1.1\, \sigma$| |
|$\Delta \Omega _{\rm m} = +1.5\, \times \delta \Omega _{\rm m}$| | |$2.3\, \sigma$| |
|$\Delta \sigma _8 = -2\, \times \delta \sigma _8$| | |$2.0\, \sigma$| |
|$\Delta \Omega _{\rm m} = +2\, \times \delta \Omega _{\rm m}$| | |$3.8\, \sigma$| |
|$\Delta \sigma _8 = -3\, \times \delta \sigma _8$| | |$3.7\, \sigma$| |
|$\Delta \Omega _{\rm m} = +3\, \times \delta \Omega _{\rm m}$| | |$\gt 5 \, \sigma$| |
|$\Delta \sigma _8 = -5\, \times \delta \sigma _8$| | |$\gt 5 \, \sigma$| |
|$\Delta \Omega _{\rm m} = +5\, \times \delta \Omega _{\rm m}$| | |$\gt 5 \, \sigma$| |
Evaluation of a priori Gaussian tension . | |
---|---|
(Ωm, σ8) shift . | full-par-space N-σ . |
|$\Delta \sigma _8 = -0.5\, \times \delta \sigma _8$| | |$0.02\, \sigma$| |
|$\Delta \Omega _{\rm m} = +0.5\, \times \delta \Omega _{\rm m}$| | |$0.09\, \sigma$| |
|$\Delta \sigma _8 = -1\, \times \delta \sigma _8$| | |$0.4\, \sigma$| |
|$\Delta \Omega _{\rm m} = +1\, \times \delta \Omega _{\rm m}$| | |$1.0\, \sigma$| |
|$\Delta \sigma _8 = -1.5\, \times \delta \sigma _8$| | |$1.1\, \sigma$| |
|$\Delta \Omega _{\rm m} = +1.5\, \times \delta \Omega _{\rm m}$| | |$2.3\, \sigma$| |
|$\Delta \sigma _8 = -2\, \times \delta \sigma _8$| | |$2.0\, \sigma$| |
|$\Delta \Omega _{\rm m} = +2\, \times \delta \Omega _{\rm m}$| | |$3.8\, \sigma$| |
|$\Delta \sigma _8 = -3\, \times \delta \sigma _8$| | |$3.7\, \sigma$| |
|$\Delta \Omega _{\rm m} = +3\, \times \delta \Omega _{\rm m}$| | |$\gt 5 \, \sigma$| |
|$\Delta \sigma _8 = -5\, \times \delta \sigma _8$| | |$\gt 5 \, \sigma$| |
|$\Delta \Omega _{\rm m} = +5\, \times \delta \Omega _{\rm m}$| | |$\gt 5 \, \sigma$| |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.