Values for our single-parameter baryonic feedback model as a function of the sub-grid heating temperature in the bahamas feedback models. In the formulae below |$\theta =\log _{10}(T_\mathrm{AGN}/10^{7.8}\, \mathrm{K})$|. In equation (24) β = 2 has been fixed. Parameter X(z) is constructed from X0 and Xz as |$X(z) = X_0\times 10^{z X_z}$|.
Parameter . | Equation . | bahamas formula . |
---|---|---|
B0 | 20 | 3.44–0.496θ |
Bz | 20 | −0.0671–0.0371θ |
f*, 0/10−2 | 25 | 2.01–0.30θ |
f*, z | 25 | 0.409+0.0224θ |
|$\log _{10}(M_{\mathrm{b},0}/\, h^{-1}\, \mathrm{M_\odot })$| | 24 | 13.87+1.81θ |
Mb, z | 24 | −0.108+0.195θ |
Parameter . | Equation . | bahamas formula . |
---|---|---|
B0 | 20 | 3.44–0.496θ |
Bz | 20 | −0.0671–0.0371θ |
f*, 0/10−2 | 25 | 2.01–0.30θ |
f*, z | 25 | 0.409+0.0224θ |
|$\log _{10}(M_{\mathrm{b},0}/\, h^{-1}\, \mathrm{M_\odot })$| | 24 | 13.87+1.81θ |
Mb, z | 24 | −0.108+0.195θ |
Values for our single-parameter baryonic feedback model as a function of the sub-grid heating temperature in the bahamas feedback models. In the formulae below |$\theta =\log _{10}(T_\mathrm{AGN}/10^{7.8}\, \mathrm{K})$|. In equation (24) β = 2 has been fixed. Parameter X(z) is constructed from X0 and Xz as |$X(z) = X_0\times 10^{z X_z}$|.
Parameter . | Equation . | bahamas formula . |
---|---|---|
B0 | 20 | 3.44–0.496θ |
Bz | 20 | −0.0671–0.0371θ |
f*, 0/10−2 | 25 | 2.01–0.30θ |
f*, z | 25 | 0.409+0.0224θ |
|$\log _{10}(M_{\mathrm{b},0}/\, h^{-1}\, \mathrm{M_\odot })$| | 24 | 13.87+1.81θ |
Mb, z | 24 | −0.108+0.195θ |
Parameter . | Equation . | bahamas formula . |
---|---|---|
B0 | 20 | 3.44–0.496θ |
Bz | 20 | −0.0671–0.0371θ |
f*, 0/10−2 | 25 | 2.01–0.30θ |
f*, z | 25 | 0.409+0.0224θ |
|$\log _{10}(M_{\mathrm{b},0}/\, h^{-1}\, \mathrm{M_\odot })$| | 24 | 13.87+1.81θ |
Mb, z | 24 | −0.108+0.195θ |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.