Table 3.

Stellar parameters obtained from the spectroscopic analysis. Masses under the assumption of chemically homogeneous evolution (Mhom) are derived with the mass–luminosity relation by Gräfener et al. (2011). Most probable stellar parameters derived with BONNSAI (Schneider et al. 2014) based on stellar evolutionary models by Brott et al. (2011) and Köhler et al. (2015).

Spectroscopic analysis
SpTlog L/LTeffRefflog g|$\log \dot{M}/\sqrt{f_{\rm V}}$|ϵCϵNMhomMsp
KRcm s−2M yr−1log (C/H) + 12log (N/H) + 12MM
PrimaryOC2.5 If*6.15 ± 0.18|$50\, 000\pm 2500$|15.8 ± 2.14.0 ± 0.1–5.6 to –5.2 ± 0.27.7 ± 0.37.2 ± 0.3106|$90^{+25}_{-18}$|
SecondaryO4 V5.78 ± 0.18|$45\, 000\pm 2500$|12.8 ± 1.7a–6.5b66
Recovered stellar parameters by BONNSAI
SpTlog L/LTeffRefflog gAgeϵCϵNMevoMevo, ini
KRcm s−2MyrMM
PrimaryOC2.5 If*6.08 ± 0.14|$50\, 700^{+2500}_{-2200}$||$13.9^{+2.5}_{-2.0}$||$4.15^{+0.01}_{-0.17}$|0.9 ± 0.67.75c6.9c83 ± 19|$84^{+21}_{-19}$|
SecondaryO4 V|$5.66^{+0.17}_{-0.19}$||$45\, 800^{+2800}_{-2700}$||$10.1^{+2.5}_{-2.0}$||$4.17^{+0.05}_{-0.21}$||$1.6^{+0.7}_{-1.3}$|7.75c6.9c48 ± 11|$47^{+13}_{-9}$|
Spectroscopic analysis
SpTlog L/LTeffRefflog g|$\log \dot{M}/\sqrt{f_{\rm V}}$|ϵCϵNMhomMsp
KRcm s−2M yr−1log (C/H) + 12log (N/H) + 12MM
PrimaryOC2.5 If*6.15 ± 0.18|$50\, 000\pm 2500$|15.8 ± 2.14.0 ± 0.1–5.6 to –5.2 ± 0.27.7 ± 0.37.2 ± 0.3106|$90^{+25}_{-18}$|
SecondaryO4 V5.78 ± 0.18|$45\, 000\pm 2500$|12.8 ± 1.7a–6.5b66
Recovered stellar parameters by BONNSAI
SpTlog L/LTeffRefflog gAgeϵCϵNMevoMevo, ini
KRcm s−2MyrMM
PrimaryOC2.5 If*6.08 ± 0.14|$50\, 700^{+2500}_{-2200}$||$13.9^{+2.5}_{-2.0}$||$4.15^{+0.01}_{-0.17}$|0.9 ± 0.67.75c6.9c83 ± 19|$84^{+21}_{-19}$|
SecondaryO4 V|$5.66^{+0.17}_{-0.19}$||$45\, 800^{+2800}_{-2700}$||$10.1^{+2.5}_{-2.0}$||$4.17^{+0.05}_{-0.21}$||$1.6^{+0.7}_{-1.3}$|7.75c6.9c48 ± 11|$47^{+13}_{-9}$|

Note.

a

log g could not be derived, because the wings of the Balmer lines are in emission.

b

Approximate upper limit for the mass-loss rate.

c

The probability distribution function shows a wide spread of possible composition, but the most probable value is the initial chemical composition for the LMC (Brott et al. 2011).

Table 3.

Stellar parameters obtained from the spectroscopic analysis. Masses under the assumption of chemically homogeneous evolution (Mhom) are derived with the mass–luminosity relation by Gräfener et al. (2011). Most probable stellar parameters derived with BONNSAI (Schneider et al. 2014) based on stellar evolutionary models by Brott et al. (2011) and Köhler et al. (2015).

Spectroscopic analysis
SpTlog L/LTeffRefflog g|$\log \dot{M}/\sqrt{f_{\rm V}}$|ϵCϵNMhomMsp
KRcm s−2M yr−1log (C/H) + 12log (N/H) + 12MM
PrimaryOC2.5 If*6.15 ± 0.18|$50\, 000\pm 2500$|15.8 ± 2.14.0 ± 0.1–5.6 to –5.2 ± 0.27.7 ± 0.37.2 ± 0.3106|$90^{+25}_{-18}$|
SecondaryO4 V5.78 ± 0.18|$45\, 000\pm 2500$|12.8 ± 1.7a–6.5b66
Recovered stellar parameters by BONNSAI
SpTlog L/LTeffRefflog gAgeϵCϵNMevoMevo, ini
KRcm s−2MyrMM
PrimaryOC2.5 If*6.08 ± 0.14|$50\, 700^{+2500}_{-2200}$||$13.9^{+2.5}_{-2.0}$||$4.15^{+0.01}_{-0.17}$|0.9 ± 0.67.75c6.9c83 ± 19|$84^{+21}_{-19}$|
SecondaryO4 V|$5.66^{+0.17}_{-0.19}$||$45\, 800^{+2800}_{-2700}$||$10.1^{+2.5}_{-2.0}$||$4.17^{+0.05}_{-0.21}$||$1.6^{+0.7}_{-1.3}$|7.75c6.9c48 ± 11|$47^{+13}_{-9}$|
Spectroscopic analysis
SpTlog L/LTeffRefflog g|$\log \dot{M}/\sqrt{f_{\rm V}}$|ϵCϵNMhomMsp
KRcm s−2M yr−1log (C/H) + 12log (N/H) + 12MM
PrimaryOC2.5 If*6.15 ± 0.18|$50\, 000\pm 2500$|15.8 ± 2.14.0 ± 0.1–5.6 to –5.2 ± 0.27.7 ± 0.37.2 ± 0.3106|$90^{+25}_{-18}$|
SecondaryO4 V5.78 ± 0.18|$45\, 000\pm 2500$|12.8 ± 1.7a–6.5b66
Recovered stellar parameters by BONNSAI
SpTlog L/LTeffRefflog gAgeϵCϵNMevoMevo, ini
KRcm s−2MyrMM
PrimaryOC2.5 If*6.08 ± 0.14|$50\, 700^{+2500}_{-2200}$||$13.9^{+2.5}_{-2.0}$||$4.15^{+0.01}_{-0.17}$|0.9 ± 0.67.75c6.9c83 ± 19|$84^{+21}_{-19}$|
SecondaryO4 V|$5.66^{+0.17}_{-0.19}$||$45\, 800^{+2800}_{-2700}$||$10.1^{+2.5}_{-2.0}$||$4.17^{+0.05}_{-0.21}$||$1.6^{+0.7}_{-1.3}$|7.75c6.9c48 ± 11|$47^{+13}_{-9}$|

Note.

a

log g could not be derived, because the wings of the Balmer lines are in emission.

b

Approximate upper limit for the mass-loss rate.

c

The probability distribution function shows a wide spread of possible composition, but the most probable value is the initial chemical composition for the LMC (Brott et al. 2011).

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close