Stellar parameters obtained from the spectroscopic analysis. Masses under the assumption of chemically homogeneous evolution (Mhom) are derived with the mass–luminosity relation by Gräfener et al. (2011). Most probable stellar parameters derived with BONNSAI (Schneider et al. 2014) based on stellar evolutionary models by Brott et al. (2011) and Köhler et al. (2015).
Spectroscopic analysis . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
. | SpT . | log L/L⊙ . | Teff . | Reff . | log g . | |$\log \dot{M}/\sqrt{f_{\rm V}}$| . | ϵC . | ϵN . | Mhom . | Msp . |
. | . | . | K . | R⊙ . | cm s−2 . | M⊙ yr−1 . | log (C/H) + 12 . | log (N/H) + 12 . | M⊙ . | M⊙ . |
Primary | OC2.5 If* | 6.15 ± 0.18 | |$50\, 000\pm 2500$| | 15.8 ± 2.1 | 4.0 ± 0.1 | –5.6 to –5.2 ± 0.2 | 7.7 ± 0.3 | 7.2 ± 0.3 | 106 | |$90^{+25}_{-18}$| |
Secondary | O4 V | 5.78 ± 0.18 | |$45\, 000\pm 2500$| | 12.8 ± 1.7 | –a | –6.5b | – | – | 66 | – |
Recovered stellar parameters by BONNSAI | ||||||||||
SpT | log L/L⊙ | Teff | Reff | log g | Age | ϵC | ϵN | Mevo | Mevo, ini | |
K | R⊙ | cm s−2 | Myr | M⊙ | M⊙ | |||||
Primary | OC2.5 If* | 6.08 ± 0.14 | |$50\, 700^{+2500}_{-2200}$| | |$13.9^{+2.5}_{-2.0}$| | |$4.15^{+0.01}_{-0.17}$| | 0.9 ± 0.6 | 7.75c | 6.9c | 83 ± 19 | |$84^{+21}_{-19}$| |
Secondary | O4 V | |$5.66^{+0.17}_{-0.19}$| | |$45\, 800^{+2800}_{-2700}$| | |$10.1^{+2.5}_{-2.0}$| | |$4.17^{+0.05}_{-0.21}$| | |$1.6^{+0.7}_{-1.3}$| | 7.75c | 6.9c | 48 ± 11 | |$47^{+13}_{-9}$| |
Spectroscopic analysis . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
. | SpT . | log L/L⊙ . | Teff . | Reff . | log g . | |$\log \dot{M}/\sqrt{f_{\rm V}}$| . | ϵC . | ϵN . | Mhom . | Msp . |
. | . | . | K . | R⊙ . | cm s−2 . | M⊙ yr−1 . | log (C/H) + 12 . | log (N/H) + 12 . | M⊙ . | M⊙ . |
Primary | OC2.5 If* | 6.15 ± 0.18 | |$50\, 000\pm 2500$| | 15.8 ± 2.1 | 4.0 ± 0.1 | –5.6 to –5.2 ± 0.2 | 7.7 ± 0.3 | 7.2 ± 0.3 | 106 | |$90^{+25}_{-18}$| |
Secondary | O4 V | 5.78 ± 0.18 | |$45\, 000\pm 2500$| | 12.8 ± 1.7 | –a | –6.5b | – | – | 66 | – |
Recovered stellar parameters by BONNSAI | ||||||||||
SpT | log L/L⊙ | Teff | Reff | log g | Age | ϵC | ϵN | Mevo | Mevo, ini | |
K | R⊙ | cm s−2 | Myr | M⊙ | M⊙ | |||||
Primary | OC2.5 If* | 6.08 ± 0.14 | |$50\, 700^{+2500}_{-2200}$| | |$13.9^{+2.5}_{-2.0}$| | |$4.15^{+0.01}_{-0.17}$| | 0.9 ± 0.6 | 7.75c | 6.9c | 83 ± 19 | |$84^{+21}_{-19}$| |
Secondary | O4 V | |$5.66^{+0.17}_{-0.19}$| | |$45\, 800^{+2800}_{-2700}$| | |$10.1^{+2.5}_{-2.0}$| | |$4.17^{+0.05}_{-0.21}$| | |$1.6^{+0.7}_{-1.3}$| | 7.75c | 6.9c | 48 ± 11 | |$47^{+13}_{-9}$| |
Note.
log g could not be derived, because the wings of the Balmer lines are in emission.
Approximate upper limit for the mass-loss rate.
The probability distribution function shows a wide spread of possible composition, but the most probable value is the initial chemical composition for the LMC (Brott et al. 2011).
Stellar parameters obtained from the spectroscopic analysis. Masses under the assumption of chemically homogeneous evolution (Mhom) are derived with the mass–luminosity relation by Gräfener et al. (2011). Most probable stellar parameters derived with BONNSAI (Schneider et al. 2014) based on stellar evolutionary models by Brott et al. (2011) and Köhler et al. (2015).
Spectroscopic analysis . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
. | SpT . | log L/L⊙ . | Teff . | Reff . | log g . | |$\log \dot{M}/\sqrt{f_{\rm V}}$| . | ϵC . | ϵN . | Mhom . | Msp . |
. | . | . | K . | R⊙ . | cm s−2 . | M⊙ yr−1 . | log (C/H) + 12 . | log (N/H) + 12 . | M⊙ . | M⊙ . |
Primary | OC2.5 If* | 6.15 ± 0.18 | |$50\, 000\pm 2500$| | 15.8 ± 2.1 | 4.0 ± 0.1 | –5.6 to –5.2 ± 0.2 | 7.7 ± 0.3 | 7.2 ± 0.3 | 106 | |$90^{+25}_{-18}$| |
Secondary | O4 V | 5.78 ± 0.18 | |$45\, 000\pm 2500$| | 12.8 ± 1.7 | –a | –6.5b | – | – | 66 | – |
Recovered stellar parameters by BONNSAI | ||||||||||
SpT | log L/L⊙ | Teff | Reff | log g | Age | ϵC | ϵN | Mevo | Mevo, ini | |
K | R⊙ | cm s−2 | Myr | M⊙ | M⊙ | |||||
Primary | OC2.5 If* | 6.08 ± 0.14 | |$50\, 700^{+2500}_{-2200}$| | |$13.9^{+2.5}_{-2.0}$| | |$4.15^{+0.01}_{-0.17}$| | 0.9 ± 0.6 | 7.75c | 6.9c | 83 ± 19 | |$84^{+21}_{-19}$| |
Secondary | O4 V | |$5.66^{+0.17}_{-0.19}$| | |$45\, 800^{+2800}_{-2700}$| | |$10.1^{+2.5}_{-2.0}$| | |$4.17^{+0.05}_{-0.21}$| | |$1.6^{+0.7}_{-1.3}$| | 7.75c | 6.9c | 48 ± 11 | |$47^{+13}_{-9}$| |
Spectroscopic analysis . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
. | SpT . | log L/L⊙ . | Teff . | Reff . | log g . | |$\log \dot{M}/\sqrt{f_{\rm V}}$| . | ϵC . | ϵN . | Mhom . | Msp . |
. | . | . | K . | R⊙ . | cm s−2 . | M⊙ yr−1 . | log (C/H) + 12 . | log (N/H) + 12 . | M⊙ . | M⊙ . |
Primary | OC2.5 If* | 6.15 ± 0.18 | |$50\, 000\pm 2500$| | 15.8 ± 2.1 | 4.0 ± 0.1 | –5.6 to –5.2 ± 0.2 | 7.7 ± 0.3 | 7.2 ± 0.3 | 106 | |$90^{+25}_{-18}$| |
Secondary | O4 V | 5.78 ± 0.18 | |$45\, 000\pm 2500$| | 12.8 ± 1.7 | –a | –6.5b | – | – | 66 | – |
Recovered stellar parameters by BONNSAI | ||||||||||
SpT | log L/L⊙ | Teff | Reff | log g | Age | ϵC | ϵN | Mevo | Mevo, ini | |
K | R⊙ | cm s−2 | Myr | M⊙ | M⊙ | |||||
Primary | OC2.5 If* | 6.08 ± 0.14 | |$50\, 700^{+2500}_{-2200}$| | |$13.9^{+2.5}_{-2.0}$| | |$4.15^{+0.01}_{-0.17}$| | 0.9 ± 0.6 | 7.75c | 6.9c | 83 ± 19 | |$84^{+21}_{-19}$| |
Secondary | O4 V | |$5.66^{+0.17}_{-0.19}$| | |$45\, 800^{+2800}_{-2700}$| | |$10.1^{+2.5}_{-2.0}$| | |$4.17^{+0.05}_{-0.21}$| | |$1.6^{+0.7}_{-1.3}$| | 7.75c | 6.9c | 48 ± 11 | |$47^{+13}_{-9}$| |
Note.
log g could not be derived, because the wings of the Balmer lines are in emission.
Approximate upper limit for the mass-loss rate.
The probability distribution function shows a wide spread of possible composition, but the most probable value is the initial chemical composition for the LMC (Brott et al. 2011).
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.