Table 1.

Continuum core parameters.

NameRADec.FWHMDec.PA|$F_{\rm 3\,mm}^{\rm int.}$||$F_{\rm 3mm}^{p}$|RcoreTgasMcorelog(ncore)ΣcoreVlsrΔVαvir
(J2000)(J2000)maj(arcsec) × min(arcsec)(°)(mJy)(mJy beam−1)(10−2 pc)(K)(M)(cm−3)(g cm−2)(km s−1)(km s−1)
MM1-a18:53:18.021:25:25.72.3 × 2.221.4124.2 ± 0.854.7 ± 0.22.0 ± 0.2100.0199 ± 327.432.757.6 ± 0.24.5 ± 0.20.5
MM1-b18:53:18.291:25:25.92.2 × 2.0102.19.6 ± 0.19.6 ± 0.21.9 ± 0.227.658 ± 97.311.057.1 ± 0.22.9 ± 0.20.6
MM1-c18:53:18.301:25:13.63.5 × 2.416.09.1 ± 1.02.8 ± 0.22.6 ± 0.214.2115 ± 197.011.159.3 ± 0.21.1 ± 0.20.1
MM1-d18:53:18.501:25:18.43.8 × 2.532.010.3 ± 1.03.0 ± 0.22.7 ± 0.213.8136 ± 227.012.158.6 ± 0.21.8 ± 0.20.1
MM1-e18:53:18.641:25:28.04.5 × 3.5112.95.6 ± 0.11.9 ± 0.23.5 ± 0.322.642 ± 76.52.257.4 ± 0.21.6 ± 0.20.5
MM1-f18:53:18.191:25:20.32.7 × 2.1152.56.9 ± 0.15.5 ± 0.22.1 ± 0.218.665 ± 117.29.556.9 ± 0.23.3 ± 0.20.8
MM1-g18:53:18.711:26:1.33.7 × 1.6151.024.5 ± 0.99.1 ± 0.22.1 ± 0.221.7196 ± 327.428.358.4 ± 0.23.4 ± 0.20.3
MM2-a18:53:18.601:24:46.75.3 × 4.023.262.3 ± 1.59.8 ± 0.24.1 ± 0.3100.097 ± 166.43.856.5 ± 0.22.5 ± 0.20.7
MM2-b18:53:18.381:24:54.16.7 × 2.90.834.0 ± 1.45.5 ± 0.23.9 ± 0.320.8281 ± 466.912.256.2 ± 0.22.7 ± 0.20.2
NameRADec.FWHMDec.PA|$F_{\rm 3\,mm}^{\rm int.}$||$F_{\rm 3mm}^{p}$|RcoreTgasMcorelog(ncore)ΣcoreVlsrΔVαvir
(J2000)(J2000)maj(arcsec) × min(arcsec)(°)(mJy)(mJy beam−1)(10−2 pc)(K)(M)(cm−3)(g cm−2)(km s−1)(km s−1)
MM1-a18:53:18.021:25:25.72.3 × 2.221.4124.2 ± 0.854.7 ± 0.22.0 ± 0.2100.0199 ± 327.432.757.6 ± 0.24.5 ± 0.20.5
MM1-b18:53:18.291:25:25.92.2 × 2.0102.19.6 ± 0.19.6 ± 0.21.9 ± 0.227.658 ± 97.311.057.1 ± 0.22.9 ± 0.20.6
MM1-c18:53:18.301:25:13.63.5 × 2.416.09.1 ± 1.02.8 ± 0.22.6 ± 0.214.2115 ± 197.011.159.3 ± 0.21.1 ± 0.20.1
MM1-d18:53:18.501:25:18.43.8 × 2.532.010.3 ± 1.03.0 ± 0.22.7 ± 0.213.8136 ± 227.012.158.6 ± 0.21.8 ± 0.20.1
MM1-e18:53:18.641:25:28.04.5 × 3.5112.95.6 ± 0.11.9 ± 0.23.5 ± 0.322.642 ± 76.52.257.4 ± 0.21.6 ± 0.20.5
MM1-f18:53:18.191:25:20.32.7 × 2.1152.56.9 ± 0.15.5 ± 0.22.1 ± 0.218.665 ± 117.29.556.9 ± 0.23.3 ± 0.20.8
MM1-g18:53:18.711:26:1.33.7 × 1.6151.024.5 ± 0.99.1 ± 0.22.1 ± 0.221.7196 ± 327.428.358.4 ± 0.23.4 ± 0.20.3
MM2-a18:53:18.601:24:46.75.3 × 4.023.262.3 ± 1.59.8 ± 0.24.1 ± 0.3100.097 ± 166.43.856.5 ± 0.22.5 ± 0.20.7
MM2-b18:53:18.381:24:54.16.7 × 2.90.834.0 ± 1.45.5 ± 0.23.9 ± 0.320.8281 ± 466.912.256.2 ± 0.22.7 ± 0.20.2

Note. Rcore is derived from Reff/3600 × π/180 × D given the relation |$R_{\rm eff} = \sqrt{FWHM_{\rm dec}^{\rm maj}\times FWHM_{\rm dec}^{\rm min}}/2$|⁠, and the distance D of the core. Gas temperature for all the cores, except for MM1-a and MM2-a, is estimated from the kinetic temperature map obtained from VLA observations of NH3 by Lu et al. (2014). For cores MM1-a and MM2-a, the temperature is assumed to be 100 K, given their association with a hot molecular core and an UC-H ii region, respectively. Vlsr and ΔV along with the associated errors are derived from single Gaussian component fit to the average spectrum of H13CO+ (1–0) over each core. The errors for the fluxes result from the 2D Gaussian fitting in the core extraction, while the ones for Rcore, Mcore, and ncore are mainly due to the distance uncertainty.

Table 1.

Continuum core parameters.

NameRADec.FWHMDec.PA|$F_{\rm 3\,mm}^{\rm int.}$||$F_{\rm 3mm}^{p}$|RcoreTgasMcorelog(ncore)ΣcoreVlsrΔVαvir
(J2000)(J2000)maj(arcsec) × min(arcsec)(°)(mJy)(mJy beam−1)(10−2 pc)(K)(M)(cm−3)(g cm−2)(km s−1)(km s−1)
MM1-a18:53:18.021:25:25.72.3 × 2.221.4124.2 ± 0.854.7 ± 0.22.0 ± 0.2100.0199 ± 327.432.757.6 ± 0.24.5 ± 0.20.5
MM1-b18:53:18.291:25:25.92.2 × 2.0102.19.6 ± 0.19.6 ± 0.21.9 ± 0.227.658 ± 97.311.057.1 ± 0.22.9 ± 0.20.6
MM1-c18:53:18.301:25:13.63.5 × 2.416.09.1 ± 1.02.8 ± 0.22.6 ± 0.214.2115 ± 197.011.159.3 ± 0.21.1 ± 0.20.1
MM1-d18:53:18.501:25:18.43.8 × 2.532.010.3 ± 1.03.0 ± 0.22.7 ± 0.213.8136 ± 227.012.158.6 ± 0.21.8 ± 0.20.1
MM1-e18:53:18.641:25:28.04.5 × 3.5112.95.6 ± 0.11.9 ± 0.23.5 ± 0.322.642 ± 76.52.257.4 ± 0.21.6 ± 0.20.5
MM1-f18:53:18.191:25:20.32.7 × 2.1152.56.9 ± 0.15.5 ± 0.22.1 ± 0.218.665 ± 117.29.556.9 ± 0.23.3 ± 0.20.8
MM1-g18:53:18.711:26:1.33.7 × 1.6151.024.5 ± 0.99.1 ± 0.22.1 ± 0.221.7196 ± 327.428.358.4 ± 0.23.4 ± 0.20.3
MM2-a18:53:18.601:24:46.75.3 × 4.023.262.3 ± 1.59.8 ± 0.24.1 ± 0.3100.097 ± 166.43.856.5 ± 0.22.5 ± 0.20.7
MM2-b18:53:18.381:24:54.16.7 × 2.90.834.0 ± 1.45.5 ± 0.23.9 ± 0.320.8281 ± 466.912.256.2 ± 0.22.7 ± 0.20.2
NameRADec.FWHMDec.PA|$F_{\rm 3\,mm}^{\rm int.}$||$F_{\rm 3mm}^{p}$|RcoreTgasMcorelog(ncore)ΣcoreVlsrΔVαvir
(J2000)(J2000)maj(arcsec) × min(arcsec)(°)(mJy)(mJy beam−1)(10−2 pc)(K)(M)(cm−3)(g cm−2)(km s−1)(km s−1)
MM1-a18:53:18.021:25:25.72.3 × 2.221.4124.2 ± 0.854.7 ± 0.22.0 ± 0.2100.0199 ± 327.432.757.6 ± 0.24.5 ± 0.20.5
MM1-b18:53:18.291:25:25.92.2 × 2.0102.19.6 ± 0.19.6 ± 0.21.9 ± 0.227.658 ± 97.311.057.1 ± 0.22.9 ± 0.20.6
MM1-c18:53:18.301:25:13.63.5 × 2.416.09.1 ± 1.02.8 ± 0.22.6 ± 0.214.2115 ± 197.011.159.3 ± 0.21.1 ± 0.20.1
MM1-d18:53:18.501:25:18.43.8 × 2.532.010.3 ± 1.03.0 ± 0.22.7 ± 0.213.8136 ± 227.012.158.6 ± 0.21.8 ± 0.20.1
MM1-e18:53:18.641:25:28.04.5 × 3.5112.95.6 ± 0.11.9 ± 0.23.5 ± 0.322.642 ± 76.52.257.4 ± 0.21.6 ± 0.20.5
MM1-f18:53:18.191:25:20.32.7 × 2.1152.56.9 ± 0.15.5 ± 0.22.1 ± 0.218.665 ± 117.29.556.9 ± 0.23.3 ± 0.20.8
MM1-g18:53:18.711:26:1.33.7 × 1.6151.024.5 ± 0.99.1 ± 0.22.1 ± 0.221.7196 ± 327.428.358.4 ± 0.23.4 ± 0.20.3
MM2-a18:53:18.601:24:46.75.3 × 4.023.262.3 ± 1.59.8 ± 0.24.1 ± 0.3100.097 ± 166.43.856.5 ± 0.22.5 ± 0.20.7
MM2-b18:53:18.381:24:54.16.7 × 2.90.834.0 ± 1.45.5 ± 0.23.9 ± 0.320.8281 ± 466.912.256.2 ± 0.22.7 ± 0.20.2

Note. Rcore is derived from Reff/3600 × π/180 × D given the relation |$R_{\rm eff} = \sqrt{FWHM_{\rm dec}^{\rm maj}\times FWHM_{\rm dec}^{\rm min}}/2$|⁠, and the distance D of the core. Gas temperature for all the cores, except for MM1-a and MM2-a, is estimated from the kinetic temperature map obtained from VLA observations of NH3 by Lu et al. (2014). For cores MM1-a and MM2-a, the temperature is assumed to be 100 K, given their association with a hot molecular core and an UC-H ii region, respectively. Vlsr and ΔV along with the associated errors are derived from single Gaussian component fit to the average spectrum of H13CO+ (1–0) over each core. The errors for the fluxes result from the 2D Gaussian fitting in the core extraction, while the ones for Rcore, Mcore, and ncore are mainly due to the distance uncertainty.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close