Results of simulation scenarios. Proportions of 500 simulation runs in which |$X_1$| is correctly selected at the first split in scenarios 1–3 and 5–8 and |$X_1$| then |$X_2$| and |$X_3$| are correctly selected as the first three splits in scenarios 4 and 9. |$n$| is the total sample size, and |$p$| denotes the total number of candidate split variables. In scenarios 6–9, the sample size is 300.
. | . | |$n=250$| . | |$n=500$| . | ||
---|---|---|---|---|---|
Scenario . | Method . | |$p=20$| . | |$p=50$| . | |$p=20$| . | |$p=50$| . |
Weighted | 0.076 | 0.040 | 0.136 | 0.080 | |
1. Non-tree, exponential | Simple | 0.422 | 0.262 | 0.586 | 0.466 |
DIPM | 0.446 | 0.290 | 0.600 | 0.476 | |
Weighted | 0.116 | 0.066 | 0.192 | 0.076 | |
2. Non-tree, Weibull | Simple | 0.560 | 0.432 | 0.724 | 0.664 |
DIPM | 0.566 | 0.444 | 0.750 | 0.682 | |
Weighted | 0.700 | 0.498 | 0.912 | 0.856 | |
3. Tree of depth 2 | Simple | 0.732 | 0.650 | 0.910 | 0.874 |
DIPM | 0.748 | 0.680 | 0.910 | 0.888 | |
Weighted | 0.740 | 0.638 | 0.950 | 0.946 | |
4. Tree of depth 3 | Simple | 0.760 | 0.758 | 0.910 | 0.902 |
DIPM | 0.784 | 0.784 | 0.942 | 0.918 | |
Weighted | 0.072 | 0.036 | 0.068 | 0.040 | |
5. Non-tree, non-PH | Simple | 0.146 | 0.062 | 0.232 | 0.134 |
DIPM | 0.156 | 0.066 | 0.242 | 0.124 | |
No. of Z Vars. | Weighted Method | Simple Cox splits | DIPM Method | ||
1 | 0.586 | 0.644 | 0.694 | ||
6. Non-tree, exponential | 10 | 0.020 | 0.098 | 0.070 | |
100 | 0.000 | 0.004 | 0.002 | ||
1 | 0.642 | 0.708 | 0.756 | ||
7. Non-tree, Weibull | 10 | 0.026 | 0.130 | 0.110 | |
100 | 0.000 | 0.004 | 0.002 | ||
1 | 0.930 | 0.994 | 0.994 | ||
8. Tree of depth 2 | 10 | 0.616 | 0.970 | 0.962 | |
100 | 0.126 | 0.812 | 0.770 | ||
1 | 0.634 | 0.636 | 0.656 | ||
9. Tree of depth 3 | 10 | 0.092 | 0.302 | 0.270 | |
100 | 0.002 | 0.060 | 0.040 |
. | . | |$n=250$| . | |$n=500$| . | ||
---|---|---|---|---|---|
Scenario . | Method . | |$p=20$| . | |$p=50$| . | |$p=20$| . | |$p=50$| . |
Weighted | 0.076 | 0.040 | 0.136 | 0.080 | |
1. Non-tree, exponential | Simple | 0.422 | 0.262 | 0.586 | 0.466 |
DIPM | 0.446 | 0.290 | 0.600 | 0.476 | |
Weighted | 0.116 | 0.066 | 0.192 | 0.076 | |
2. Non-tree, Weibull | Simple | 0.560 | 0.432 | 0.724 | 0.664 |
DIPM | 0.566 | 0.444 | 0.750 | 0.682 | |
Weighted | 0.700 | 0.498 | 0.912 | 0.856 | |
3. Tree of depth 2 | Simple | 0.732 | 0.650 | 0.910 | 0.874 |
DIPM | 0.748 | 0.680 | 0.910 | 0.888 | |
Weighted | 0.740 | 0.638 | 0.950 | 0.946 | |
4. Tree of depth 3 | Simple | 0.760 | 0.758 | 0.910 | 0.902 |
DIPM | 0.784 | 0.784 | 0.942 | 0.918 | |
Weighted | 0.072 | 0.036 | 0.068 | 0.040 | |
5. Non-tree, non-PH | Simple | 0.146 | 0.062 | 0.232 | 0.134 |
DIPM | 0.156 | 0.066 | 0.242 | 0.124 | |
No. of Z Vars. | Weighted Method | Simple Cox splits | DIPM Method | ||
1 | 0.586 | 0.644 | 0.694 | ||
6. Non-tree, exponential | 10 | 0.020 | 0.098 | 0.070 | |
100 | 0.000 | 0.004 | 0.002 | ||
1 | 0.642 | 0.708 | 0.756 | ||
7. Non-tree, Weibull | 10 | 0.026 | 0.130 | 0.110 | |
100 | 0.000 | 0.004 | 0.002 | ||
1 | 0.930 | 0.994 | 0.994 | ||
8. Tree of depth 2 | 10 | 0.616 | 0.970 | 0.962 | |
100 | 0.126 | 0.812 | 0.770 | ||
1 | 0.634 | 0.636 | 0.656 | ||
9. Tree of depth 3 | 10 | 0.092 | 0.302 | 0.270 | |
100 | 0.002 | 0.060 | 0.040 |
Results of simulation scenarios. Proportions of 500 simulation runs in which |$X_1$| is correctly selected at the first split in scenarios 1–3 and 5–8 and |$X_1$| then |$X_2$| and |$X_3$| are correctly selected as the first three splits in scenarios 4 and 9. |$n$| is the total sample size, and |$p$| denotes the total number of candidate split variables. In scenarios 6–9, the sample size is 300.
. | . | |$n=250$| . | |$n=500$| . | ||
---|---|---|---|---|---|
Scenario . | Method . | |$p=20$| . | |$p=50$| . | |$p=20$| . | |$p=50$| . |
Weighted | 0.076 | 0.040 | 0.136 | 0.080 | |
1. Non-tree, exponential | Simple | 0.422 | 0.262 | 0.586 | 0.466 |
DIPM | 0.446 | 0.290 | 0.600 | 0.476 | |
Weighted | 0.116 | 0.066 | 0.192 | 0.076 | |
2. Non-tree, Weibull | Simple | 0.560 | 0.432 | 0.724 | 0.664 |
DIPM | 0.566 | 0.444 | 0.750 | 0.682 | |
Weighted | 0.700 | 0.498 | 0.912 | 0.856 | |
3. Tree of depth 2 | Simple | 0.732 | 0.650 | 0.910 | 0.874 |
DIPM | 0.748 | 0.680 | 0.910 | 0.888 | |
Weighted | 0.740 | 0.638 | 0.950 | 0.946 | |
4. Tree of depth 3 | Simple | 0.760 | 0.758 | 0.910 | 0.902 |
DIPM | 0.784 | 0.784 | 0.942 | 0.918 | |
Weighted | 0.072 | 0.036 | 0.068 | 0.040 | |
5. Non-tree, non-PH | Simple | 0.146 | 0.062 | 0.232 | 0.134 |
DIPM | 0.156 | 0.066 | 0.242 | 0.124 | |
No. of Z Vars. | Weighted Method | Simple Cox splits | DIPM Method | ||
1 | 0.586 | 0.644 | 0.694 | ||
6. Non-tree, exponential | 10 | 0.020 | 0.098 | 0.070 | |
100 | 0.000 | 0.004 | 0.002 | ||
1 | 0.642 | 0.708 | 0.756 | ||
7. Non-tree, Weibull | 10 | 0.026 | 0.130 | 0.110 | |
100 | 0.000 | 0.004 | 0.002 | ||
1 | 0.930 | 0.994 | 0.994 | ||
8. Tree of depth 2 | 10 | 0.616 | 0.970 | 0.962 | |
100 | 0.126 | 0.812 | 0.770 | ||
1 | 0.634 | 0.636 | 0.656 | ||
9. Tree of depth 3 | 10 | 0.092 | 0.302 | 0.270 | |
100 | 0.002 | 0.060 | 0.040 |
. | . | |$n=250$| . | |$n=500$| . | ||
---|---|---|---|---|---|
Scenario . | Method . | |$p=20$| . | |$p=50$| . | |$p=20$| . | |$p=50$| . |
Weighted | 0.076 | 0.040 | 0.136 | 0.080 | |
1. Non-tree, exponential | Simple | 0.422 | 0.262 | 0.586 | 0.466 |
DIPM | 0.446 | 0.290 | 0.600 | 0.476 | |
Weighted | 0.116 | 0.066 | 0.192 | 0.076 | |
2. Non-tree, Weibull | Simple | 0.560 | 0.432 | 0.724 | 0.664 |
DIPM | 0.566 | 0.444 | 0.750 | 0.682 | |
Weighted | 0.700 | 0.498 | 0.912 | 0.856 | |
3. Tree of depth 2 | Simple | 0.732 | 0.650 | 0.910 | 0.874 |
DIPM | 0.748 | 0.680 | 0.910 | 0.888 | |
Weighted | 0.740 | 0.638 | 0.950 | 0.946 | |
4. Tree of depth 3 | Simple | 0.760 | 0.758 | 0.910 | 0.902 |
DIPM | 0.784 | 0.784 | 0.942 | 0.918 | |
Weighted | 0.072 | 0.036 | 0.068 | 0.040 | |
5. Non-tree, non-PH | Simple | 0.146 | 0.062 | 0.232 | 0.134 |
DIPM | 0.156 | 0.066 | 0.242 | 0.124 | |
No. of Z Vars. | Weighted Method | Simple Cox splits | DIPM Method | ||
1 | 0.586 | 0.644 | 0.694 | ||
6. Non-tree, exponential | 10 | 0.020 | 0.098 | 0.070 | |
100 | 0.000 | 0.004 | 0.002 | ||
1 | 0.642 | 0.708 | 0.756 | ||
7. Non-tree, Weibull | 10 | 0.026 | 0.130 | 0.110 | |
100 | 0.000 | 0.004 | 0.002 | ||
1 | 0.930 | 0.994 | 0.994 | ||
8. Tree of depth 2 | 10 | 0.616 | 0.970 | 0.962 | |
100 | 0.126 | 0.812 | 0.770 | ||
1 | 0.634 | 0.636 | 0.656 | ||
9. Tree of depth 3 | 10 | 0.092 | 0.302 | 0.270 | |
100 | 0.002 | 0.060 | 0.040 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.