Sample sizes based on exact and approximate approaches to achieve a power of |$80\%$| for |$\theta=0.8$| and |$0.75$|, |$\alpha=0.025$| and keeping |$\lambda_R=21$| and |$\lambda_P=7$| under three different allocations. The simulated power (|$ \hat{\phi} $|) and estimated average type-I error (|$ \hat{\alpha} $|) for exact Bayesian approach under non-informative Gamma prior are also reported to show that calculated sample size is adequate to guarantee |$80\%$| power except for minor numerical fluctuation. Note, Frequentist type-I error is always strictly maintained at |$\alpha= 0.025$| by equation 4.1.
. | Frequentist normal . | Approximate Bayesian . | Exact Bayesian . | . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|$E$| . | |$R$| . | |$P$| . | |$\theta$| . | |$\lambda_{E}$| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$ \hat{\alpha} $| . |
20.0 | 79 | 237 | 0.802 | 78 | 234 | 0.801 | 79 | 237 | 0.802 | 0.0215 | ||||
19.7 | 113 | 339 | 0.802 | 112 | 336 | 0.798 | 112 | 336 | 0.808 | 0.0222 | ||||
0.80 | 19.4 | 176 | 528 | 0.790 | 175 | 525 | 0.795 | 175 | 525 | 0.796 | 0.0225 | |||
19.1 | 312 | 936 | 0.795 | 310 | 930 | 0.797 | 302 | 906 | 0.789 | 0.0229 | ||||
1 | 1 | 1 | 18.8 | 700 | 2100 | 0.803 | 697 | 2091 | 0.799 | 685 | 2055 | 0.802 | 0.0224 | |
20.0 | 39 | 117 | 0.810 | 38 | 114 | 0.813 | 38 | 114 | 0.807 | 0.0173 | ||||
19.7 | 50 | 150 | 0.806 | 48 | 144 | 0.798 | 48 | 144 | 0.786 | 0.0208 | ||||
0.75 | 19.4 | 66 | 198 | 0.805 | 65 | 195 | 0.804 | 65 | 195 | 0.804 | 0.0217 | |||
19.1 | 93 | 279 | 0.803 | 91 | 273 | 0.804 | 88 | 264 | 0.790 | 0.0185 | ||||
18.8 | 140 | 420 | 0.801 | 138 | 414 | 0.806 | 133 | 399 | 0.787 | 0.0184 | ||||
20.0 | 40 | 200 | 0.805 | 40 | 200 | 0.808 | 37 | 185 | 0.794 | 0.0219 | ||||
19.7 | 57 | 285 | 0.801 | 57 | 285 | 0.803 | 52 | 260 | 0.798 | 0.0208 | ||||
0.80 | 19.4 | 89 | 445 | 0.799 | 89 | 445 | 0.802 | 81 | 405 | 0.783 | 0.0217 | |||
19.1 | 158 | 790 | 0.798 | 157 | 785 | 0.800 | 153 | 765 | 0.805 | 0.0193 | ||||
2 | 2 | 1 | 18.8 | 353 | 1765 | 0.804 | 352 | 1760 | 0.802 | 351 | 1755 | 0.797 | 0.0189 | |
20.0 | 20 | 100 | 0.813 | 19 | 95 | 0.800 | 18 | 90 | 0.821 | 0.0210 | ||||
19.7 | 26 | 130 | 0.816 | 25 | 125 | 0.809 | 24 | 120 | 0.811 | 0.0201 | ||||
0.75 | 19.4 | 34 | 170 | 0.808 | 33 | 165 | 0.801 | 33 | 165 | 0.815 | 0.0181 | |||
19.1 | 48 | 240 | 0.813 | 46 | 230 | 0.801 | 45 | 225 | 0.831 | 0.0181 | ||||
18.8 | 72 | 360 | 0.808 | 70 | 350 | 0.804 | 64 | 320 | 0.810 | 0.0180 | ||||
20.0 | 33 | 198 | 0.819 | 32 | 192 | 0.813 | 31 | 186 | 0.795 | 0.0216 | ||||
19.7 | 47 | 282 | 0.804 | 46 | 276 | 0.799 | 44 | 264 | 0.805 | 0.0210 | ||||
0.80 | 19.4 | 72 | 432 | 0.798 | 71 | 426 | 0.796 | 71 | 426 | 0.786 | 0.0199 | |||
19.1 | 128 | 768 | 0.803 | 127 | 762 | 0.799 | 125 | 750 | 0.795 | 0.0205 | ||||
3 | 2 | 1 | 18.8 | 287 | 1722 | 0.800 | 284 | 1704 | 0.797 | 277 | 1662 | 0.782 | 0.0209 | |
20.0 | 16 | 96 | 0.814 | 15 | 90 | 0.799 | 15 | 90 | 0.802 | 0.0225 | ||||
19.7 | 21 | 126 | 0.821 | 20 | 120 | 0.813 | 18 | 108 | 0.787 | 0.0201 | ||||
0.75 | 19.4 | 27 | 162 | 0.799 | 27 | 162 | 0.809 | 26 | 156 | 0.802 | 0.0216 | |||
19.1 | 38 | 228 | 0.807 | 37 | 222 | 0.804 | 37 | 222 | 0.796 | 0.0193 | ||||
18.8 | 58 | 348 | 0.807 | 56 | 336 | 0.800 | 54 | 324 | 0.811 | 0.0188 |
. | Frequentist normal . | Approximate Bayesian . | Exact Bayesian . | . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|$E$| . | |$R$| . | |$P$| . | |$\theta$| . | |$\lambda_{E}$| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$ \hat{\alpha} $| . |
20.0 | 79 | 237 | 0.802 | 78 | 234 | 0.801 | 79 | 237 | 0.802 | 0.0215 | ||||
19.7 | 113 | 339 | 0.802 | 112 | 336 | 0.798 | 112 | 336 | 0.808 | 0.0222 | ||||
0.80 | 19.4 | 176 | 528 | 0.790 | 175 | 525 | 0.795 | 175 | 525 | 0.796 | 0.0225 | |||
19.1 | 312 | 936 | 0.795 | 310 | 930 | 0.797 | 302 | 906 | 0.789 | 0.0229 | ||||
1 | 1 | 1 | 18.8 | 700 | 2100 | 0.803 | 697 | 2091 | 0.799 | 685 | 2055 | 0.802 | 0.0224 | |
20.0 | 39 | 117 | 0.810 | 38 | 114 | 0.813 | 38 | 114 | 0.807 | 0.0173 | ||||
19.7 | 50 | 150 | 0.806 | 48 | 144 | 0.798 | 48 | 144 | 0.786 | 0.0208 | ||||
0.75 | 19.4 | 66 | 198 | 0.805 | 65 | 195 | 0.804 | 65 | 195 | 0.804 | 0.0217 | |||
19.1 | 93 | 279 | 0.803 | 91 | 273 | 0.804 | 88 | 264 | 0.790 | 0.0185 | ||||
18.8 | 140 | 420 | 0.801 | 138 | 414 | 0.806 | 133 | 399 | 0.787 | 0.0184 | ||||
20.0 | 40 | 200 | 0.805 | 40 | 200 | 0.808 | 37 | 185 | 0.794 | 0.0219 | ||||
19.7 | 57 | 285 | 0.801 | 57 | 285 | 0.803 | 52 | 260 | 0.798 | 0.0208 | ||||
0.80 | 19.4 | 89 | 445 | 0.799 | 89 | 445 | 0.802 | 81 | 405 | 0.783 | 0.0217 | |||
19.1 | 158 | 790 | 0.798 | 157 | 785 | 0.800 | 153 | 765 | 0.805 | 0.0193 | ||||
2 | 2 | 1 | 18.8 | 353 | 1765 | 0.804 | 352 | 1760 | 0.802 | 351 | 1755 | 0.797 | 0.0189 | |
20.0 | 20 | 100 | 0.813 | 19 | 95 | 0.800 | 18 | 90 | 0.821 | 0.0210 | ||||
19.7 | 26 | 130 | 0.816 | 25 | 125 | 0.809 | 24 | 120 | 0.811 | 0.0201 | ||||
0.75 | 19.4 | 34 | 170 | 0.808 | 33 | 165 | 0.801 | 33 | 165 | 0.815 | 0.0181 | |||
19.1 | 48 | 240 | 0.813 | 46 | 230 | 0.801 | 45 | 225 | 0.831 | 0.0181 | ||||
18.8 | 72 | 360 | 0.808 | 70 | 350 | 0.804 | 64 | 320 | 0.810 | 0.0180 | ||||
20.0 | 33 | 198 | 0.819 | 32 | 192 | 0.813 | 31 | 186 | 0.795 | 0.0216 | ||||
19.7 | 47 | 282 | 0.804 | 46 | 276 | 0.799 | 44 | 264 | 0.805 | 0.0210 | ||||
0.80 | 19.4 | 72 | 432 | 0.798 | 71 | 426 | 0.796 | 71 | 426 | 0.786 | 0.0199 | |||
19.1 | 128 | 768 | 0.803 | 127 | 762 | 0.799 | 125 | 750 | 0.795 | 0.0205 | ||||
3 | 2 | 1 | 18.8 | 287 | 1722 | 0.800 | 284 | 1704 | 0.797 | 277 | 1662 | 0.782 | 0.0209 | |
20.0 | 16 | 96 | 0.814 | 15 | 90 | 0.799 | 15 | 90 | 0.802 | 0.0225 | ||||
19.7 | 21 | 126 | 0.821 | 20 | 120 | 0.813 | 18 | 108 | 0.787 | 0.0201 | ||||
0.75 | 19.4 | 27 | 162 | 0.799 | 27 | 162 | 0.809 | 26 | 156 | 0.802 | 0.0216 | |||
19.1 | 38 | 228 | 0.807 | 37 | 222 | 0.804 | 37 | 222 | 0.796 | 0.0193 | ||||
18.8 | 58 | 348 | 0.807 | 56 | 336 | 0.800 | 54 | 324 | 0.811 | 0.0188 |
Sample sizes based on exact and approximate approaches to achieve a power of |$80\%$| for |$\theta=0.8$| and |$0.75$|, |$\alpha=0.025$| and keeping |$\lambda_R=21$| and |$\lambda_P=7$| under three different allocations. The simulated power (|$ \hat{\phi} $|) and estimated average type-I error (|$ \hat{\alpha} $|) for exact Bayesian approach under non-informative Gamma prior are also reported to show that calculated sample size is adequate to guarantee |$80\%$| power except for minor numerical fluctuation. Note, Frequentist type-I error is always strictly maintained at |$\alpha= 0.025$| by equation 4.1.
. | Frequentist normal . | Approximate Bayesian . | Exact Bayesian . | . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|$E$| . | |$R$| . | |$P$| . | |$\theta$| . | |$\lambda_{E}$| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$ \hat{\alpha} $| . |
20.0 | 79 | 237 | 0.802 | 78 | 234 | 0.801 | 79 | 237 | 0.802 | 0.0215 | ||||
19.7 | 113 | 339 | 0.802 | 112 | 336 | 0.798 | 112 | 336 | 0.808 | 0.0222 | ||||
0.80 | 19.4 | 176 | 528 | 0.790 | 175 | 525 | 0.795 | 175 | 525 | 0.796 | 0.0225 | |||
19.1 | 312 | 936 | 0.795 | 310 | 930 | 0.797 | 302 | 906 | 0.789 | 0.0229 | ||||
1 | 1 | 1 | 18.8 | 700 | 2100 | 0.803 | 697 | 2091 | 0.799 | 685 | 2055 | 0.802 | 0.0224 | |
20.0 | 39 | 117 | 0.810 | 38 | 114 | 0.813 | 38 | 114 | 0.807 | 0.0173 | ||||
19.7 | 50 | 150 | 0.806 | 48 | 144 | 0.798 | 48 | 144 | 0.786 | 0.0208 | ||||
0.75 | 19.4 | 66 | 198 | 0.805 | 65 | 195 | 0.804 | 65 | 195 | 0.804 | 0.0217 | |||
19.1 | 93 | 279 | 0.803 | 91 | 273 | 0.804 | 88 | 264 | 0.790 | 0.0185 | ||||
18.8 | 140 | 420 | 0.801 | 138 | 414 | 0.806 | 133 | 399 | 0.787 | 0.0184 | ||||
20.0 | 40 | 200 | 0.805 | 40 | 200 | 0.808 | 37 | 185 | 0.794 | 0.0219 | ||||
19.7 | 57 | 285 | 0.801 | 57 | 285 | 0.803 | 52 | 260 | 0.798 | 0.0208 | ||||
0.80 | 19.4 | 89 | 445 | 0.799 | 89 | 445 | 0.802 | 81 | 405 | 0.783 | 0.0217 | |||
19.1 | 158 | 790 | 0.798 | 157 | 785 | 0.800 | 153 | 765 | 0.805 | 0.0193 | ||||
2 | 2 | 1 | 18.8 | 353 | 1765 | 0.804 | 352 | 1760 | 0.802 | 351 | 1755 | 0.797 | 0.0189 | |
20.0 | 20 | 100 | 0.813 | 19 | 95 | 0.800 | 18 | 90 | 0.821 | 0.0210 | ||||
19.7 | 26 | 130 | 0.816 | 25 | 125 | 0.809 | 24 | 120 | 0.811 | 0.0201 | ||||
0.75 | 19.4 | 34 | 170 | 0.808 | 33 | 165 | 0.801 | 33 | 165 | 0.815 | 0.0181 | |||
19.1 | 48 | 240 | 0.813 | 46 | 230 | 0.801 | 45 | 225 | 0.831 | 0.0181 | ||||
18.8 | 72 | 360 | 0.808 | 70 | 350 | 0.804 | 64 | 320 | 0.810 | 0.0180 | ||||
20.0 | 33 | 198 | 0.819 | 32 | 192 | 0.813 | 31 | 186 | 0.795 | 0.0216 | ||||
19.7 | 47 | 282 | 0.804 | 46 | 276 | 0.799 | 44 | 264 | 0.805 | 0.0210 | ||||
0.80 | 19.4 | 72 | 432 | 0.798 | 71 | 426 | 0.796 | 71 | 426 | 0.786 | 0.0199 | |||
19.1 | 128 | 768 | 0.803 | 127 | 762 | 0.799 | 125 | 750 | 0.795 | 0.0205 | ||||
3 | 2 | 1 | 18.8 | 287 | 1722 | 0.800 | 284 | 1704 | 0.797 | 277 | 1662 | 0.782 | 0.0209 | |
20.0 | 16 | 96 | 0.814 | 15 | 90 | 0.799 | 15 | 90 | 0.802 | 0.0225 | ||||
19.7 | 21 | 126 | 0.821 | 20 | 120 | 0.813 | 18 | 108 | 0.787 | 0.0201 | ||||
0.75 | 19.4 | 27 | 162 | 0.799 | 27 | 162 | 0.809 | 26 | 156 | 0.802 | 0.0216 | |||
19.1 | 38 | 228 | 0.807 | 37 | 222 | 0.804 | 37 | 222 | 0.796 | 0.0193 | ||||
18.8 | 58 | 348 | 0.807 | 56 | 336 | 0.800 | 54 | 324 | 0.811 | 0.0188 |
. | Frequentist normal . | Approximate Bayesian . | Exact Bayesian . | . | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|$E$| . | |$R$| . | |$P$| . | |$\theta$| . | |$\lambda_{E}$| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$n_{P}$| . | |$N$| . | |$ \hat{\phi} $| . | |$ \hat{\alpha} $| . |
20.0 | 79 | 237 | 0.802 | 78 | 234 | 0.801 | 79 | 237 | 0.802 | 0.0215 | ||||
19.7 | 113 | 339 | 0.802 | 112 | 336 | 0.798 | 112 | 336 | 0.808 | 0.0222 | ||||
0.80 | 19.4 | 176 | 528 | 0.790 | 175 | 525 | 0.795 | 175 | 525 | 0.796 | 0.0225 | |||
19.1 | 312 | 936 | 0.795 | 310 | 930 | 0.797 | 302 | 906 | 0.789 | 0.0229 | ||||
1 | 1 | 1 | 18.8 | 700 | 2100 | 0.803 | 697 | 2091 | 0.799 | 685 | 2055 | 0.802 | 0.0224 | |
20.0 | 39 | 117 | 0.810 | 38 | 114 | 0.813 | 38 | 114 | 0.807 | 0.0173 | ||||
19.7 | 50 | 150 | 0.806 | 48 | 144 | 0.798 | 48 | 144 | 0.786 | 0.0208 | ||||
0.75 | 19.4 | 66 | 198 | 0.805 | 65 | 195 | 0.804 | 65 | 195 | 0.804 | 0.0217 | |||
19.1 | 93 | 279 | 0.803 | 91 | 273 | 0.804 | 88 | 264 | 0.790 | 0.0185 | ||||
18.8 | 140 | 420 | 0.801 | 138 | 414 | 0.806 | 133 | 399 | 0.787 | 0.0184 | ||||
20.0 | 40 | 200 | 0.805 | 40 | 200 | 0.808 | 37 | 185 | 0.794 | 0.0219 | ||||
19.7 | 57 | 285 | 0.801 | 57 | 285 | 0.803 | 52 | 260 | 0.798 | 0.0208 | ||||
0.80 | 19.4 | 89 | 445 | 0.799 | 89 | 445 | 0.802 | 81 | 405 | 0.783 | 0.0217 | |||
19.1 | 158 | 790 | 0.798 | 157 | 785 | 0.800 | 153 | 765 | 0.805 | 0.0193 | ||||
2 | 2 | 1 | 18.8 | 353 | 1765 | 0.804 | 352 | 1760 | 0.802 | 351 | 1755 | 0.797 | 0.0189 | |
20.0 | 20 | 100 | 0.813 | 19 | 95 | 0.800 | 18 | 90 | 0.821 | 0.0210 | ||||
19.7 | 26 | 130 | 0.816 | 25 | 125 | 0.809 | 24 | 120 | 0.811 | 0.0201 | ||||
0.75 | 19.4 | 34 | 170 | 0.808 | 33 | 165 | 0.801 | 33 | 165 | 0.815 | 0.0181 | |||
19.1 | 48 | 240 | 0.813 | 46 | 230 | 0.801 | 45 | 225 | 0.831 | 0.0181 | ||||
18.8 | 72 | 360 | 0.808 | 70 | 350 | 0.804 | 64 | 320 | 0.810 | 0.0180 | ||||
20.0 | 33 | 198 | 0.819 | 32 | 192 | 0.813 | 31 | 186 | 0.795 | 0.0216 | ||||
19.7 | 47 | 282 | 0.804 | 46 | 276 | 0.799 | 44 | 264 | 0.805 | 0.0210 | ||||
0.80 | 19.4 | 72 | 432 | 0.798 | 71 | 426 | 0.796 | 71 | 426 | 0.786 | 0.0199 | |||
19.1 | 128 | 768 | 0.803 | 127 | 762 | 0.799 | 125 | 750 | 0.795 | 0.0205 | ||||
3 | 2 | 1 | 18.8 | 287 | 1722 | 0.800 | 284 | 1704 | 0.797 | 277 | 1662 | 0.782 | 0.0209 | |
20.0 | 16 | 96 | 0.814 | 15 | 90 | 0.799 | 15 | 90 | 0.802 | 0.0225 | ||||
19.7 | 21 | 126 | 0.821 | 20 | 120 | 0.813 | 18 | 108 | 0.787 | 0.0201 | ||||
0.75 | 19.4 | 27 | 162 | 0.799 | 27 | 162 | 0.809 | 26 | 156 | 0.802 | 0.0216 | |||
19.1 | 38 | 228 | 0.807 | 37 | 222 | 0.804 | 37 | 222 | 0.796 | 0.0193 | ||||
18.8 | 58 | 348 | 0.807 | 56 | 336 | 0.800 | 54 | 324 | 0.811 | 0.0188 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.