The performance of the existing predictors and PreTP-EL on independent test datasets in terms of the AUC
Datasets . | PPTPP [12] . | PEPred-Suite [13] . | Methodsa . | PreTP-EL . |
---|---|---|---|---|
AAP | 0.770 | 0.804 | 0.742 (AntiAngioPred) | 0.819 |
ABP | 0.988 | 0.976 | 0.976 (AntiBP) | 0.992 |
ACP | 0.883 | 0.949 | 0.939 (ACPred-FL) | 0.950b |
AIP | 0.720 | 0.751 | 0.795 (AIPpred) | 0.810 |
AVP | 0.946 | 0.949 | 0.931 (AVPpred) | 0.951 |
CPP | 0.965 | 0.952 | 0.941 (CPPred-RF) | 0.978 |
PBP | 0.740 | 0.804 | 0.742 (PSBinder) | 0.809 |
QSP | 0.944 | 0.960 | 0.903 (QSPpred) | 0.965 |
Ave.c | 0.869 | 0.893 | 0.871 | 0.909 |
Datasets . | PPTPP [12] . | PEPred-Suite [13] . | Methodsa . | PreTP-EL . |
---|---|---|---|---|
AAP | 0.770 | 0.804 | 0.742 (AntiAngioPred) | 0.819 |
ABP | 0.988 | 0.976 | 0.976 (AntiBP) | 0.992 |
ACP | 0.883 | 0.949 | 0.939 (ACPred-FL) | 0.950b |
AIP | 0.720 | 0.751 | 0.795 (AIPpred) | 0.810 |
AVP | 0.946 | 0.949 | 0.931 (AVPpred) | 0.951 |
CPP | 0.965 | 0.952 | 0.941 (CPPred-RF) | 0.978 |
PBP | 0.740 | 0.804 | 0.742 (PSBinder) | 0.809 |
QSP | 0.944 | 0.960 | 0.903 (QSPpred) | 0.965 |
Ave.c | 0.869 | 0.893 | 0.871 | 0.909 |
aThe results are reported in [13] and the method is following the corresponding results.
bPreTP-EL utilizes one more feature extraction method Bit20(NTCT = 2) [13] on ACP dataset.
cAve. represents the average value of each predictor over eight datasets.
The performance of the existing predictors and PreTP-EL on independent test datasets in terms of the AUC
Datasets . | PPTPP [12] . | PEPred-Suite [13] . | Methodsa . | PreTP-EL . |
---|---|---|---|---|
AAP | 0.770 | 0.804 | 0.742 (AntiAngioPred) | 0.819 |
ABP | 0.988 | 0.976 | 0.976 (AntiBP) | 0.992 |
ACP | 0.883 | 0.949 | 0.939 (ACPred-FL) | 0.950b |
AIP | 0.720 | 0.751 | 0.795 (AIPpred) | 0.810 |
AVP | 0.946 | 0.949 | 0.931 (AVPpred) | 0.951 |
CPP | 0.965 | 0.952 | 0.941 (CPPred-RF) | 0.978 |
PBP | 0.740 | 0.804 | 0.742 (PSBinder) | 0.809 |
QSP | 0.944 | 0.960 | 0.903 (QSPpred) | 0.965 |
Ave.c | 0.869 | 0.893 | 0.871 | 0.909 |
Datasets . | PPTPP [12] . | PEPred-Suite [13] . | Methodsa . | PreTP-EL . |
---|---|---|---|---|
AAP | 0.770 | 0.804 | 0.742 (AntiAngioPred) | 0.819 |
ABP | 0.988 | 0.976 | 0.976 (AntiBP) | 0.992 |
ACP | 0.883 | 0.949 | 0.939 (ACPred-FL) | 0.950b |
AIP | 0.720 | 0.751 | 0.795 (AIPpred) | 0.810 |
AVP | 0.946 | 0.949 | 0.931 (AVPpred) | 0.951 |
CPP | 0.965 | 0.952 | 0.941 (CPPred-RF) | 0.978 |
PBP | 0.740 | 0.804 | 0.742 (PSBinder) | 0.809 |
QSP | 0.944 | 0.960 | 0.903 (QSPpred) | 0.965 |
Ave.c | 0.869 | 0.893 | 0.871 | 0.909 |
aThe results are reported in [13] and the method is following the corresponding results.
bPreTP-EL utilizes one more feature extraction method Bit20(NTCT = 2) [13] on ACP dataset.
cAve. represents the average value of each predictor over eight datasets.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.