Best-fitting parameters to the black points in Fig. 1 using equation (13), and their uncertainties which are taken to be the diagonal elements of the correlation matrix of the least-squares fitting procedure.
Parameter . | Value . | 1σ fit uncertainty . |
---|---|---|
r1 | 0.7309 | ±0.0014 |
r2 | 0.8432 | ±0.0084 |
r3 | 1.0057 | ±0.0024 |
log10(M12/M⊙ | 11.33 | ±0.003 |
log10(M23/M⊙ | 13.19 | ±0.029 |
t12 | 1.721 | ±0.045 |
t23 | 2.377 | ±0.18 |
Parameter . | Value . | 1σ fit uncertainty . |
---|---|---|
r1 | 0.7309 | ±0.0014 |
r2 | 0.8432 | ±0.0084 |
r3 | 1.0057 | ±0.0024 |
log10(M12/M⊙ | 11.33 | ±0.003 |
log10(M23/M⊙ | 13.19 | ±0.029 |
t12 | 1.721 | ±0.045 |
t23 | 2.377 | ±0.18 |
Best-fitting parameters to the black points in Fig. 1 using equation (13), and their uncertainties which are taken to be the diagonal elements of the correlation matrix of the least-squares fitting procedure.
Parameter . | Value . | 1σ fit uncertainty . |
---|---|---|
r1 | 0.7309 | ±0.0014 |
r2 | 0.8432 | ±0.0084 |
r3 | 1.0057 | ±0.0024 |
log10(M12/M⊙ | 11.33 | ±0.003 |
log10(M23/M⊙ | 13.19 | ±0.029 |
t12 | 1.721 | ±0.045 |
t23 | 2.377 | ±0.18 |
Parameter . | Value . | 1σ fit uncertainty . |
---|---|---|
r1 | 0.7309 | ±0.0014 |
r2 | 0.8432 | ±0.0084 |
r3 | 1.0057 | ±0.0024 |
log10(M12/M⊙ | 11.33 | ±0.003 |
log10(M23/M⊙ | 13.19 | ±0.029 |
t12 | 1.721 | ±0.045 |
t23 | 2.377 | ±0.18 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.