Table 1

A comprehensive summary of the reviewed approaches for AMP prediction

TypeToolYearAlgorithmFeature selectionEvaluation strategyWeb server availabilityMax data uploadFile upload availabilityEmail of resultSoftware availability
Machine learning-based methodsAMPer2007HMMsNone10-fold CVNoN.A.N.A.N.A.Yes
CAMP2010, 2016SVM, RF, ANN, DARFE (RF Gini)10-fold CV, independent testYesN.A.YesNoNo
Porto et al.2010SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
Song et al.2011k-NN, BLASTPmRMR, IFSJack-knife validation, independent testNoN.A.N.A.N.A.No
Torrent et al.2011ANNNoneIndependent testNoN.A.N.A.N.A.No
Fernandes et al.2012ANFISANFISIndependent testNoN.A.N.A.N.A.No
ClassAMP2012RF, SVMRFE (RF Gini)10-fold CV, independent testYesN.A.YesNoNo
CS-AMPPred2012SVMNone5-fold CV, independent testNoN.A.N.A.N.A.Yes
C-PAmP2013SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
iAMP-2L2013FKNNNoneJack-knife validation, independent testYes500NoNoNo
Paola et al.2013SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
Randou et al.2013LRNoneIndependent testNoN.A.N.A.N.A.No
dbaasp2014z-ScoreNoneIndependent testNoN.A.N.A.N.A.No
ADAM2015SVM, profile HMMsNoneN.A.YesN.A.NoNONo
Camacho et al.2015NB, RF, SVMNone5-fold CV, independent testNoN.A.N.A.N.A.No
Ng et al.2015SVM, BLASTPNoneJack-knife validation, independent testNoN.A.N.A.N.A.No
MLAMP2016RFNoneJack-knife validation, independent testYes5YesYesNo
iAMPpred2017SVMNone10-fold CV, independent testYesN.A.NoNoNo
AmPEP2018RFNone10-fold CV, independent testYesN.A.YesYesYes
CLN-MLEM22018MLEM2, IRIMNone10-fold CV, independent testNoN.A.N.A.N.A.No
MOEA-FW2018RF, k-NN, SVM, ANNNone10-fold CVNoN.A.N.A.N.A.No
AMAP2019SVM, XGBoost, one-versus-rest classifier fusionNoneLOCO, 5-fold CV, independent testYesN.A.NoNoNo
MAMPs-Pred2019RF, LC-RF, PS-RFNone10-fold CV, independent testNoN.A.N.A.N.A.No
dbAMP2019RFNone5-fold CV, independent testNoN.A.N.A.N.A.No
AMPfun2019DT, RF, SVMFS10-fold CV, independent testYesN.A.NoNoNo
Ampir2020SVMRFEindependent testNoN.A.N.A.N.A.Yes
Chung et al.2020RFOneR, FS5-fold CV, independent testNoN.A.N.A.N.A.No
Fu et al.2020ADANone5-fold CV, independent testNoN.A.N.A.N.A.No
AmpGram2020RFNone5-fold CV, benchmark testYes50YesNoYes
IAMPE2020RF, SVM, XGBoost, k-NN, NBNone10-fold CV, independent testYesN.A.YesNoNo
Deep learning-based methodsAMP Scanner V22018LSTMNone10-fold CV, independent testYes50 000YesNoNo
APIN2019CNNNone10-fold CV, independent testNoN.A.N.A.N.A.Yes
Deep-AmPEP302020CNNNone10-fold CV, independent testYesN.A.YesYesNo
AMPlify2020Bi-LSTM, attention mechanismNone5-fold CV, independent testNoN.A.N.A.N.A.Yes
TypeToolYearAlgorithmFeature selectionEvaluation strategyWeb server availabilityMax data uploadFile upload availabilityEmail of resultSoftware availability
Machine learning-based methodsAMPer2007HMMsNone10-fold CVNoN.A.N.A.N.A.Yes
CAMP2010, 2016SVM, RF, ANN, DARFE (RF Gini)10-fold CV, independent testYesN.A.YesNoNo
Porto et al.2010SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
Song et al.2011k-NN, BLASTPmRMR, IFSJack-knife validation, independent testNoN.A.N.A.N.A.No
Torrent et al.2011ANNNoneIndependent testNoN.A.N.A.N.A.No
Fernandes et al.2012ANFISANFISIndependent testNoN.A.N.A.N.A.No
ClassAMP2012RF, SVMRFE (RF Gini)10-fold CV, independent testYesN.A.YesNoNo
CS-AMPPred2012SVMNone5-fold CV, independent testNoN.A.N.A.N.A.Yes
C-PAmP2013SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
iAMP-2L2013FKNNNoneJack-knife validation, independent testYes500NoNoNo
Paola et al.2013SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
Randou et al.2013LRNoneIndependent testNoN.A.N.A.N.A.No
dbaasp2014z-ScoreNoneIndependent testNoN.A.N.A.N.A.No
ADAM2015SVM, profile HMMsNoneN.A.YesN.A.NoNONo
Camacho et al.2015NB, RF, SVMNone5-fold CV, independent testNoN.A.N.A.N.A.No
Ng et al.2015SVM, BLASTPNoneJack-knife validation, independent testNoN.A.N.A.N.A.No
MLAMP2016RFNoneJack-knife validation, independent testYes5YesYesNo
iAMPpred2017SVMNone10-fold CV, independent testYesN.A.NoNoNo
AmPEP2018RFNone10-fold CV, independent testYesN.A.YesYesYes
CLN-MLEM22018MLEM2, IRIMNone10-fold CV, independent testNoN.A.N.A.N.A.No
MOEA-FW2018RF, k-NN, SVM, ANNNone10-fold CVNoN.A.N.A.N.A.No
AMAP2019SVM, XGBoost, one-versus-rest classifier fusionNoneLOCO, 5-fold CV, independent testYesN.A.NoNoNo
MAMPs-Pred2019RF, LC-RF, PS-RFNone10-fold CV, independent testNoN.A.N.A.N.A.No
dbAMP2019RFNone5-fold CV, independent testNoN.A.N.A.N.A.No
AMPfun2019DT, RF, SVMFS10-fold CV, independent testYesN.A.NoNoNo
Ampir2020SVMRFEindependent testNoN.A.N.A.N.A.Yes
Chung et al.2020RFOneR, FS5-fold CV, independent testNoN.A.N.A.N.A.No
Fu et al.2020ADANone5-fold CV, independent testNoN.A.N.A.N.A.No
AmpGram2020RFNone5-fold CV, benchmark testYes50YesNoYes
IAMPE2020RF, SVM, XGBoost, k-NN, NBNone10-fold CV, independent testYesN.A.YesNoNo
Deep learning-based methodsAMP Scanner V22018LSTMNone10-fold CV, independent testYes50 000YesNoNo
APIN2019CNNNone10-fold CV, independent testNoN.A.N.A.N.A.Yes
Deep-AmPEP302020CNNNone10-fold CV, independent testYesN.A.YesYesNo
AMPlify2020Bi-LSTM, attention mechanismNone5-fold CV, independent testNoN.A.N.A.N.A.Yes

Full names of the algorithms: N.A., not available; HMMs, hidden Markov models; SVM, support vector machine; RF, random forest; ANN, artificial neural networks; DA, discriminant analysis; DT, decision tree; LR, logistic regression; k-NN, k-nearest neighbor; BLASTP, basic local alignment search tool (protein); ANFIS, adaptive neuro-fuzzy inference system; NB, naive Bayes; FKNN, fuzzy k-nearest neighbor; profile HMMs, profile hidden Markov models; MLEM2, modified learning from examples module; IRIM, interesting rule induction module; XGBoost, extreme gradient boosting; PS-RF, pruned sets-random forests; LC-RF, label combination-random forests; ADA, adaboost; LSTM, long short-term memory; CNN, convolutional neural networks; Bi-LSTM, bidirectional LSTM.

Table 1

A comprehensive summary of the reviewed approaches for AMP prediction

TypeToolYearAlgorithmFeature selectionEvaluation strategyWeb server availabilityMax data uploadFile upload availabilityEmail of resultSoftware availability
Machine learning-based methodsAMPer2007HMMsNone10-fold CVNoN.A.N.A.N.A.Yes
CAMP2010, 2016SVM, RF, ANN, DARFE (RF Gini)10-fold CV, independent testYesN.A.YesNoNo
Porto et al.2010SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
Song et al.2011k-NN, BLASTPmRMR, IFSJack-knife validation, independent testNoN.A.N.A.N.A.No
Torrent et al.2011ANNNoneIndependent testNoN.A.N.A.N.A.No
Fernandes et al.2012ANFISANFISIndependent testNoN.A.N.A.N.A.No
ClassAMP2012RF, SVMRFE (RF Gini)10-fold CV, independent testYesN.A.YesNoNo
CS-AMPPred2012SVMNone5-fold CV, independent testNoN.A.N.A.N.A.Yes
C-PAmP2013SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
iAMP-2L2013FKNNNoneJack-knife validation, independent testYes500NoNoNo
Paola et al.2013SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
Randou et al.2013LRNoneIndependent testNoN.A.N.A.N.A.No
dbaasp2014z-ScoreNoneIndependent testNoN.A.N.A.N.A.No
ADAM2015SVM, profile HMMsNoneN.A.YesN.A.NoNONo
Camacho et al.2015NB, RF, SVMNone5-fold CV, independent testNoN.A.N.A.N.A.No
Ng et al.2015SVM, BLASTPNoneJack-knife validation, independent testNoN.A.N.A.N.A.No
MLAMP2016RFNoneJack-knife validation, independent testYes5YesYesNo
iAMPpred2017SVMNone10-fold CV, independent testYesN.A.NoNoNo
AmPEP2018RFNone10-fold CV, independent testYesN.A.YesYesYes
CLN-MLEM22018MLEM2, IRIMNone10-fold CV, independent testNoN.A.N.A.N.A.No
MOEA-FW2018RF, k-NN, SVM, ANNNone10-fold CVNoN.A.N.A.N.A.No
AMAP2019SVM, XGBoost, one-versus-rest classifier fusionNoneLOCO, 5-fold CV, independent testYesN.A.NoNoNo
MAMPs-Pred2019RF, LC-RF, PS-RFNone10-fold CV, independent testNoN.A.N.A.N.A.No
dbAMP2019RFNone5-fold CV, independent testNoN.A.N.A.N.A.No
AMPfun2019DT, RF, SVMFS10-fold CV, independent testYesN.A.NoNoNo
Ampir2020SVMRFEindependent testNoN.A.N.A.N.A.Yes
Chung et al.2020RFOneR, FS5-fold CV, independent testNoN.A.N.A.N.A.No
Fu et al.2020ADANone5-fold CV, independent testNoN.A.N.A.N.A.No
AmpGram2020RFNone5-fold CV, benchmark testYes50YesNoYes
IAMPE2020RF, SVM, XGBoost, k-NN, NBNone10-fold CV, independent testYesN.A.YesNoNo
Deep learning-based methodsAMP Scanner V22018LSTMNone10-fold CV, independent testYes50 000YesNoNo
APIN2019CNNNone10-fold CV, independent testNoN.A.N.A.N.A.Yes
Deep-AmPEP302020CNNNone10-fold CV, independent testYesN.A.YesYesNo
AMPlify2020Bi-LSTM, attention mechanismNone5-fold CV, independent testNoN.A.N.A.N.A.Yes
TypeToolYearAlgorithmFeature selectionEvaluation strategyWeb server availabilityMax data uploadFile upload availabilityEmail of resultSoftware availability
Machine learning-based methodsAMPer2007HMMsNone10-fold CVNoN.A.N.A.N.A.Yes
CAMP2010, 2016SVM, RF, ANN, DARFE (RF Gini)10-fold CV, independent testYesN.A.YesNoNo
Porto et al.2010SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
Song et al.2011k-NN, BLASTPmRMR, IFSJack-knife validation, independent testNoN.A.N.A.N.A.No
Torrent et al.2011ANNNoneIndependent testNoN.A.N.A.N.A.No
Fernandes et al.2012ANFISANFISIndependent testNoN.A.N.A.N.A.No
ClassAMP2012RF, SVMRFE (RF Gini)10-fold CV, independent testYesN.A.YesNoNo
CS-AMPPred2012SVMNone5-fold CV, independent testNoN.A.N.A.N.A.Yes
C-PAmP2013SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
iAMP-2L2013FKNNNoneJack-knife validation, independent testYes500NoNoNo
Paola et al.2013SVMNone10-fold CV, independent testNoN.A.N.A.N.A.No
Randou et al.2013LRNoneIndependent testNoN.A.N.A.N.A.No
dbaasp2014z-ScoreNoneIndependent testNoN.A.N.A.N.A.No
ADAM2015SVM, profile HMMsNoneN.A.YesN.A.NoNONo
Camacho et al.2015NB, RF, SVMNone5-fold CV, independent testNoN.A.N.A.N.A.No
Ng et al.2015SVM, BLASTPNoneJack-knife validation, independent testNoN.A.N.A.N.A.No
MLAMP2016RFNoneJack-knife validation, independent testYes5YesYesNo
iAMPpred2017SVMNone10-fold CV, independent testYesN.A.NoNoNo
AmPEP2018RFNone10-fold CV, independent testYesN.A.YesYesYes
CLN-MLEM22018MLEM2, IRIMNone10-fold CV, independent testNoN.A.N.A.N.A.No
MOEA-FW2018RF, k-NN, SVM, ANNNone10-fold CVNoN.A.N.A.N.A.No
AMAP2019SVM, XGBoost, one-versus-rest classifier fusionNoneLOCO, 5-fold CV, independent testYesN.A.NoNoNo
MAMPs-Pred2019RF, LC-RF, PS-RFNone10-fold CV, independent testNoN.A.N.A.N.A.No
dbAMP2019RFNone5-fold CV, independent testNoN.A.N.A.N.A.No
AMPfun2019DT, RF, SVMFS10-fold CV, independent testYesN.A.NoNoNo
Ampir2020SVMRFEindependent testNoN.A.N.A.N.A.Yes
Chung et al.2020RFOneR, FS5-fold CV, independent testNoN.A.N.A.N.A.No
Fu et al.2020ADANone5-fold CV, independent testNoN.A.N.A.N.A.No
AmpGram2020RFNone5-fold CV, benchmark testYes50YesNoYes
IAMPE2020RF, SVM, XGBoost, k-NN, NBNone10-fold CV, independent testYesN.A.YesNoNo
Deep learning-based methodsAMP Scanner V22018LSTMNone10-fold CV, independent testYes50 000YesNoNo
APIN2019CNNNone10-fold CV, independent testNoN.A.N.A.N.A.Yes
Deep-AmPEP302020CNNNone10-fold CV, independent testYesN.A.YesYesNo
AMPlify2020Bi-LSTM, attention mechanismNone5-fold CV, independent testNoN.A.N.A.N.A.Yes

Full names of the algorithms: N.A., not available; HMMs, hidden Markov models; SVM, support vector machine; RF, random forest; ANN, artificial neural networks; DA, discriminant analysis; DT, decision tree; LR, logistic regression; k-NN, k-nearest neighbor; BLASTP, basic local alignment search tool (protein); ANFIS, adaptive neuro-fuzzy inference system; NB, naive Bayes; FKNN, fuzzy k-nearest neighbor; profile HMMs, profile hidden Markov models; MLEM2, modified learning from examples module; IRIM, interesting rule induction module; XGBoost, extreme gradient boosting; PS-RF, pruned sets-random forests; LC-RF, label combination-random forests; ADA, adaboost; LSTM, long short-term memory; CNN, convolutional neural networks; Bi-LSTM, bidirectional LSTM.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close