Table 4

Predictors and characteristics of models that predict a positive temporal artery biopsy as well as a model to predict the diagnosis of GCA in those with a negative biopsy

Variables to predict TAB-positive GCAVariables to predict TAB-negative GCA
β (s.e.)OR (95% CI)β (s.e.)OR (95% CI)
N (events)174 (33)141 (53)
Intercept−6.99 (1.16)−4.71 (1.68)
Jaw claudication3.01 (0.69)20.29 (5.28, 77.90)
Log CRP1.29 (0.56)3.63 (1.20, 10.94)0.93 (0.34)2.54 (1.30, 4.95)
TA-MRA3.76 (0.88)43.02 (7.61, 243.31)2.23 (0.48)9.29 (3.61, 23.88)
TA tenderness0.89 (0.47)2.46 (0.98, 6.18)
Age0.03 (0.02)1.03 (0.99, 1.08)
Weight loss−1.32 (0.87)0.27 (0.05, 1.47)
AIC77.526156.124

Spiegelhalter

Hosmer-Lemeshow

0.11/ p=0.740.006/ p=0.98
38.61/ p<0.010.92/ p=0.82
AUROC0.949 (0.898–1.000)0.802 (0.728–0.875)
Variables to predict TAB-positive GCAVariables to predict TAB-negative GCA
β (s.e.)OR (95% CI)β (s.e.)OR (95% CI)
N (events)174 (33)141 (53)
Intercept−6.99 (1.16)−4.71 (1.68)
Jaw claudication3.01 (0.69)20.29 (5.28, 77.90)
Log CRP1.29 (0.56)3.63 (1.20, 10.94)0.93 (0.34)2.54 (1.30, 4.95)
TA-MRA3.76 (0.88)43.02 (7.61, 243.31)2.23 (0.48)9.29 (3.61, 23.88)
TA tenderness0.89 (0.47)2.46 (0.98, 6.18)
Age0.03 (0.02)1.03 (0.99, 1.08)
Weight loss−1.32 (0.87)0.27 (0.05, 1.47)
AIC77.526156.124

Spiegelhalter

Hosmer-Lemeshow

0.11/ p=0.740.006/ p=0.98
38.61/ p<0.010.92/ p=0.82
AUROC0.949 (0.898–1.000)0.802 (0.728–0.875)
Table 4

Predictors and characteristics of models that predict a positive temporal artery biopsy as well as a model to predict the diagnosis of GCA in those with a negative biopsy

Variables to predict TAB-positive GCAVariables to predict TAB-negative GCA
β (s.e.)OR (95% CI)β (s.e.)OR (95% CI)
N (events)174 (33)141 (53)
Intercept−6.99 (1.16)−4.71 (1.68)
Jaw claudication3.01 (0.69)20.29 (5.28, 77.90)
Log CRP1.29 (0.56)3.63 (1.20, 10.94)0.93 (0.34)2.54 (1.30, 4.95)
TA-MRA3.76 (0.88)43.02 (7.61, 243.31)2.23 (0.48)9.29 (3.61, 23.88)
TA tenderness0.89 (0.47)2.46 (0.98, 6.18)
Age0.03 (0.02)1.03 (0.99, 1.08)
Weight loss−1.32 (0.87)0.27 (0.05, 1.47)
AIC77.526156.124

Spiegelhalter

Hosmer-Lemeshow

0.11/ p=0.740.006/ p=0.98
38.61/ p<0.010.92/ p=0.82
AUROC0.949 (0.898–1.000)0.802 (0.728–0.875)
Variables to predict TAB-positive GCAVariables to predict TAB-negative GCA
β (s.e.)OR (95% CI)β (s.e.)OR (95% CI)
N (events)174 (33)141 (53)
Intercept−6.99 (1.16)−4.71 (1.68)
Jaw claudication3.01 (0.69)20.29 (5.28, 77.90)
Log CRP1.29 (0.56)3.63 (1.20, 10.94)0.93 (0.34)2.54 (1.30, 4.95)
TA-MRA3.76 (0.88)43.02 (7.61, 243.31)2.23 (0.48)9.29 (3.61, 23.88)
TA tenderness0.89 (0.47)2.46 (0.98, 6.18)
Age0.03 (0.02)1.03 (0.99, 1.08)
Weight loss−1.32 (0.87)0.27 (0.05, 1.47)
AIC77.526156.124

Spiegelhalter

Hosmer-Lemeshow

0.11/ p=0.740.006/ p=0.98
38.61/ p<0.010.92/ p=0.82
AUROC0.949 (0.898–1.000)0.802 (0.728–0.875)
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close