Table 3

Predictors and characteristics of models that predict GCA with just clinical findings as well as using TA-MRA in parallel

Clinical variables to predict GCA
Clinical variables with TA-MRA to predict GCA
β (s.e.)OR (95% CI)β (s.e.)OR (95% CI)
N (events)268 (101)268 (101)
Intercept−4.58 (0.99)−2.33 (0.35)
Age0.04 (0.01)1.04 (1.01, 1.07)
Jaw claudication0.52 (0.33)1.69 (0.89, 3.20)
Vision loss0.88 (0.40)2.41 (1.10, 5.28)
Temporal arterial tenderness0.54 (0.31)1.71 (0.92, 3.12)0.61 (0.34)1.83 (0.95, 3.55)
Log CRP0.95 (0.22)2.57 (1.66, 4.00)0.81 (0.25)2.24 (1.38, 3.62)
TA-MRA2.71 (0.35)15.03 (7.50, 30.12)
AIC314.351258.678
Spiegelhalter Hosmer-Lemeshow0.01/ p=0.910.00/ p=1.00
6.32/ p=0.612.48/ p=0.96
ROC0.753 (0.694, 0.811)0.827 (0.774, 0.881)
Clinical variables to predict GCA
Clinical variables with TA-MRA to predict GCA
β (s.e.)OR (95% CI)β (s.e.)OR (95% CI)
N (events)268 (101)268 (101)
Intercept−4.58 (0.99)−2.33 (0.35)
Age0.04 (0.01)1.04 (1.01, 1.07)
Jaw claudication0.52 (0.33)1.69 (0.89, 3.20)
Vision loss0.88 (0.40)2.41 (1.10, 5.28)
Temporal arterial tenderness0.54 (0.31)1.71 (0.92, 3.12)0.61 (0.34)1.83 (0.95, 3.55)
Log CRP0.95 (0.22)2.57 (1.66, 4.00)0.81 (0.25)2.24 (1.38, 3.62)
TA-MRA2.71 (0.35)15.03 (7.50, 30.12)
AIC314.351258.678
Spiegelhalter Hosmer-Lemeshow0.01/ p=0.910.00/ p=1.00
6.32/ p=0.612.48/ p=0.96
ROC0.753 (0.694, 0.811)0.827 (0.774, 0.881)
Table 3

Predictors and characteristics of models that predict GCA with just clinical findings as well as using TA-MRA in parallel

Clinical variables to predict GCA
Clinical variables with TA-MRA to predict GCA
β (s.e.)OR (95% CI)β (s.e.)OR (95% CI)
N (events)268 (101)268 (101)
Intercept−4.58 (0.99)−2.33 (0.35)
Age0.04 (0.01)1.04 (1.01, 1.07)
Jaw claudication0.52 (0.33)1.69 (0.89, 3.20)
Vision loss0.88 (0.40)2.41 (1.10, 5.28)
Temporal arterial tenderness0.54 (0.31)1.71 (0.92, 3.12)0.61 (0.34)1.83 (0.95, 3.55)
Log CRP0.95 (0.22)2.57 (1.66, 4.00)0.81 (0.25)2.24 (1.38, 3.62)
TA-MRA2.71 (0.35)15.03 (7.50, 30.12)
AIC314.351258.678
Spiegelhalter Hosmer-Lemeshow0.01/ p=0.910.00/ p=1.00
6.32/ p=0.612.48/ p=0.96
ROC0.753 (0.694, 0.811)0.827 (0.774, 0.881)
Clinical variables to predict GCA
Clinical variables with TA-MRA to predict GCA
β (s.e.)OR (95% CI)β (s.e.)OR (95% CI)
N (events)268 (101)268 (101)
Intercept−4.58 (0.99)−2.33 (0.35)
Age0.04 (0.01)1.04 (1.01, 1.07)
Jaw claudication0.52 (0.33)1.69 (0.89, 3.20)
Vision loss0.88 (0.40)2.41 (1.10, 5.28)
Temporal arterial tenderness0.54 (0.31)1.71 (0.92, 3.12)0.61 (0.34)1.83 (0.95, 3.55)
Log CRP0.95 (0.22)2.57 (1.66, 4.00)0.81 (0.25)2.24 (1.38, 3.62)
TA-MRA2.71 (0.35)15.03 (7.50, 30.12)
AIC314.351258.678
Spiegelhalter Hosmer-Lemeshow0.01/ p=0.910.00/ p=1.00
6.32/ p=0.612.48/ p=0.96
ROC0.753 (0.694, 0.811)0.827 (0.774, 0.881)
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close