Table 2.

Parameter sets |$\Lambda $|⁠, |$\Sigma $|⁠, |$\Xi $|⁠, and Fit, and properties of the neutral |$\Xi (1690)$| state. The regularization scale is |$\mu _{\rm reg} = 630\,\hbox {MeV}$| in all channels. We also show the |$\chi ^{2}$| value for the |$\bar {K}^{0} \Lambda $| and |$K^{-} \Sigma ^{+}$| mass spectra divided by the number of degrees of freedom, |$\chi ^{2} / N_{\rm d.o.f.}$|⁠, and the ratio of the two branching fractions |$R$| defined in Eq. (11).

Set |$\Lambda $|Set |$\Sigma $|Set |$\Xi $|Fit
|$a_{\bar {K} \Sigma }$||$-$|2.30|$-$|2.23|$-$|2.10|$-$|1.98
|$a_{\bar {K} \Lambda }$||$-$|2.15|$-$|2.07|$-$|1.91|$-$|2.07
|$a_{\pi \Xi }$||$-$|2.08|$-$|1.99|$-$|1.77|$-$|0.75
|$a_{\eta \Xi }$||$-$|2.57|$-$|2.52|$-$|2.43|$-$|3.31
|$\chi ^{2} / N_{\rm d.o.f.}$|65.3/5766.6/5781.2/5759.0/57
|$R$|1.323.046.071.06
|$w_{\rm pole}$||$1682.6 - 0.8 i\,\hbox {MeV}$|No |$\Xi (1690)$| poleNo |$\Xi (1690)$| pole|$1684.3 - 0.5 i\,\hbox {MeV}$|
|$g_{K^{-} \Sigma ^{+}}$||$1.00 + 0.22 i$||$1.02 + 0.60 i$|
|$g_{\bar {K}^{0} \Sigma ^{0}}$||$-0.73 - 0.15 i$||$-0.76 - 0.41 i$|
|$g_{\bar {K}^{0} \Lambda }$||$0.24 - 0.04 i$||$0.38 + 0.20 i$|
|$g_{\pi ^{+} \Xi ^{-}}$||$0.04 + 0.08 i$||$0.06 - 0.05 i$|
|$g_{\pi ^{0} \Xi ^{0}}$||$-0.05 - 0.05 i$||$-0.09 + 0.05 i$|
|$g_{\eta \Xi ^{0}}$||$-0.76 - 0.17 i$||$-0.66 - 0.48 i$|
|$X_{K^{-} \Sigma ^{+}}$||$0.77 - 0.10 i$||$0.83 - 0.31 i$|
|$X_{\bar {K}^{0} \Sigma ^{0}}$||$0.12 + 0.04 i$||$0.12 + 0.17 i$|
|$X_{\bar {K}^{0} \Lambda }$||$0.00 + 0.00 i$||$-0.02 + 0.00 i$|
|$X_{\pi ^{+} \Xi ^{-}}$||$0.00 + 0.00 i$||$0.00 + 0.00 i$|
|$X_{\pi ^{0} \Xi ^{0}}$||$0.00 + 0.00 i$||$0.00 + 0.00 i$|
|$X_{\eta \Xi ^{0}}$||$0.02 + 0.01 i$||$0.01 + 0.02 i$|
|$Z$||$0.08 + 0.04 i$||$0.06 + 0.11 i$|
Set |$\Lambda $|Set |$\Sigma $|Set |$\Xi $|Fit
|$a_{\bar {K} \Sigma }$||$-$|2.30|$-$|2.23|$-$|2.10|$-$|1.98
|$a_{\bar {K} \Lambda }$||$-$|2.15|$-$|2.07|$-$|1.91|$-$|2.07
|$a_{\pi \Xi }$||$-$|2.08|$-$|1.99|$-$|1.77|$-$|0.75
|$a_{\eta \Xi }$||$-$|2.57|$-$|2.52|$-$|2.43|$-$|3.31
|$\chi ^{2} / N_{\rm d.o.f.}$|65.3/5766.6/5781.2/5759.0/57
|$R$|1.323.046.071.06
|$w_{\rm pole}$||$1682.6 - 0.8 i\,\hbox {MeV}$|No |$\Xi (1690)$| poleNo |$\Xi (1690)$| pole|$1684.3 - 0.5 i\,\hbox {MeV}$|
|$g_{K^{-} \Sigma ^{+}}$||$1.00 + 0.22 i$||$1.02 + 0.60 i$|
|$g_{\bar {K}^{0} \Sigma ^{0}}$||$-0.73 - 0.15 i$||$-0.76 - 0.41 i$|
|$g_{\bar {K}^{0} \Lambda }$||$0.24 - 0.04 i$||$0.38 + 0.20 i$|
|$g_{\pi ^{+} \Xi ^{-}}$||$0.04 + 0.08 i$||$0.06 - 0.05 i$|
|$g_{\pi ^{0} \Xi ^{0}}$||$-0.05 - 0.05 i$||$-0.09 + 0.05 i$|
|$g_{\eta \Xi ^{0}}$||$-0.76 - 0.17 i$||$-0.66 - 0.48 i$|
|$X_{K^{-} \Sigma ^{+}}$||$0.77 - 0.10 i$||$0.83 - 0.31 i$|
|$X_{\bar {K}^{0} \Sigma ^{0}}$||$0.12 + 0.04 i$||$0.12 + 0.17 i$|
|$X_{\bar {K}^{0} \Lambda }$||$0.00 + 0.00 i$||$-0.02 + 0.00 i$|
|$X_{\pi ^{+} \Xi ^{-}}$||$0.00 + 0.00 i$||$0.00 + 0.00 i$|
|$X_{\pi ^{0} \Xi ^{0}}$||$0.00 + 0.00 i$||$0.00 + 0.00 i$|
|$X_{\eta \Xi ^{0}}$||$0.02 + 0.01 i$||$0.01 + 0.02 i$|
|$Z$||$0.08 + 0.04 i$||$0.06 + 0.11 i$|
Table 2.

Parameter sets |$\Lambda $|⁠, |$\Sigma $|⁠, |$\Xi $|⁠, and Fit, and properties of the neutral |$\Xi (1690)$| state. The regularization scale is |$\mu _{\rm reg} = 630\,\hbox {MeV}$| in all channels. We also show the |$\chi ^{2}$| value for the |$\bar {K}^{0} \Lambda $| and |$K^{-} \Sigma ^{+}$| mass spectra divided by the number of degrees of freedom, |$\chi ^{2} / N_{\rm d.o.f.}$|⁠, and the ratio of the two branching fractions |$R$| defined in Eq. (11).

Set |$\Lambda $|Set |$\Sigma $|Set |$\Xi $|Fit
|$a_{\bar {K} \Sigma }$||$-$|2.30|$-$|2.23|$-$|2.10|$-$|1.98
|$a_{\bar {K} \Lambda }$||$-$|2.15|$-$|2.07|$-$|1.91|$-$|2.07
|$a_{\pi \Xi }$||$-$|2.08|$-$|1.99|$-$|1.77|$-$|0.75
|$a_{\eta \Xi }$||$-$|2.57|$-$|2.52|$-$|2.43|$-$|3.31
|$\chi ^{2} / N_{\rm d.o.f.}$|65.3/5766.6/5781.2/5759.0/57
|$R$|1.323.046.071.06
|$w_{\rm pole}$||$1682.6 - 0.8 i\,\hbox {MeV}$|No |$\Xi (1690)$| poleNo |$\Xi (1690)$| pole|$1684.3 - 0.5 i\,\hbox {MeV}$|
|$g_{K^{-} \Sigma ^{+}}$||$1.00 + 0.22 i$||$1.02 + 0.60 i$|
|$g_{\bar {K}^{0} \Sigma ^{0}}$||$-0.73 - 0.15 i$||$-0.76 - 0.41 i$|
|$g_{\bar {K}^{0} \Lambda }$||$0.24 - 0.04 i$||$0.38 + 0.20 i$|
|$g_{\pi ^{+} \Xi ^{-}}$||$0.04 + 0.08 i$||$0.06 - 0.05 i$|
|$g_{\pi ^{0} \Xi ^{0}}$||$-0.05 - 0.05 i$||$-0.09 + 0.05 i$|
|$g_{\eta \Xi ^{0}}$||$-0.76 - 0.17 i$||$-0.66 - 0.48 i$|
|$X_{K^{-} \Sigma ^{+}}$||$0.77 - 0.10 i$||$0.83 - 0.31 i$|
|$X_{\bar {K}^{0} \Sigma ^{0}}$||$0.12 + 0.04 i$||$0.12 + 0.17 i$|
|$X_{\bar {K}^{0} \Lambda }$||$0.00 + 0.00 i$||$-0.02 + 0.00 i$|
|$X_{\pi ^{+} \Xi ^{-}}$||$0.00 + 0.00 i$||$0.00 + 0.00 i$|
|$X_{\pi ^{0} \Xi ^{0}}$||$0.00 + 0.00 i$||$0.00 + 0.00 i$|
|$X_{\eta \Xi ^{0}}$||$0.02 + 0.01 i$||$0.01 + 0.02 i$|
|$Z$||$0.08 + 0.04 i$||$0.06 + 0.11 i$|
Set |$\Lambda $|Set |$\Sigma $|Set |$\Xi $|Fit
|$a_{\bar {K} \Sigma }$||$-$|2.30|$-$|2.23|$-$|2.10|$-$|1.98
|$a_{\bar {K} \Lambda }$||$-$|2.15|$-$|2.07|$-$|1.91|$-$|2.07
|$a_{\pi \Xi }$||$-$|2.08|$-$|1.99|$-$|1.77|$-$|0.75
|$a_{\eta \Xi }$||$-$|2.57|$-$|2.52|$-$|2.43|$-$|3.31
|$\chi ^{2} / N_{\rm d.o.f.}$|65.3/5766.6/5781.2/5759.0/57
|$R$|1.323.046.071.06
|$w_{\rm pole}$||$1682.6 - 0.8 i\,\hbox {MeV}$|No |$\Xi (1690)$| poleNo |$\Xi (1690)$| pole|$1684.3 - 0.5 i\,\hbox {MeV}$|
|$g_{K^{-} \Sigma ^{+}}$||$1.00 + 0.22 i$||$1.02 + 0.60 i$|
|$g_{\bar {K}^{0} \Sigma ^{0}}$||$-0.73 - 0.15 i$||$-0.76 - 0.41 i$|
|$g_{\bar {K}^{0} \Lambda }$||$0.24 - 0.04 i$||$0.38 + 0.20 i$|
|$g_{\pi ^{+} \Xi ^{-}}$||$0.04 + 0.08 i$||$0.06 - 0.05 i$|
|$g_{\pi ^{0} \Xi ^{0}}$||$-0.05 - 0.05 i$||$-0.09 + 0.05 i$|
|$g_{\eta \Xi ^{0}}$||$-0.76 - 0.17 i$||$-0.66 - 0.48 i$|
|$X_{K^{-} \Sigma ^{+}}$||$0.77 - 0.10 i$||$0.83 - 0.31 i$|
|$X_{\bar {K}^{0} \Sigma ^{0}}$||$0.12 + 0.04 i$||$0.12 + 0.17 i$|
|$X_{\bar {K}^{0} \Lambda }$||$0.00 + 0.00 i$||$-0.02 + 0.00 i$|
|$X_{\pi ^{+} \Xi ^{-}}$||$0.00 + 0.00 i$||$0.00 + 0.00 i$|
|$X_{\pi ^{0} \Xi ^{0}}$||$0.00 + 0.00 i$||$0.00 + 0.00 i$|
|$X_{\eta \Xi ^{0}}$||$0.02 + 0.01 i$||$0.01 + 0.02 i$|
|$Z$||$0.08 + 0.04 i$||$0.06 + 0.11 i$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close