Reference . | Q(f) . | Geometrical spreading . | Frequency range (Hz) . |
---|---|---|---|
Motazedian (2006) | |$Q\ ( f ) = {\rm{\ }}87{f^{1 \cdot 46}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $ | |$1 < f \le 10$| |
Zafarani et al. (2012) | |$Q\ ( f ) = {\rm{\ }}101{f^{0 \cdot 8}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $ | |$0.4 < f \le 15$| |
Motaghi & Ghods (2012) | |$Q\ ( f ) = {\rm{\ }}109{f^{0 \cdot 73{\rm{\ }}}}$|. | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1.15}}\ \ \ \ \ R < 80}\\ {{R^{0 \cdot 09}}\ \ \ 80 \le R \le 160}\\ {{R^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R >160} \end{array} \right. $ | |$0.6 \le f \le 12$| |
Farrokhi & Hamzehloo (2017) | |$Q\ ( f ) = {\rm{\ }}83{f^{0 \cdot 99{\rm{\ }}}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 90}\\ {{{( {90R} )}^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R \ge 90} \end{array} \right. $ | |$0.4 < f \le 24$| |
Ahmadzadeh et al. (2019) | Q |$( f ) = {\rm{\ }}162{f^{0 \cdot 61{\rm{\ }}}}$| | |${( {\frac{{{R_0}}}{R}} )^1}$| | |$0.3 < f \le 20$| |
|$Q\ ( f ) = {\rm{\ }}135{f^{0 \cdot 76{\rm{\ }}}}$| | $\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{60}}} )}^1}{{( {\frac{{60}}{R}} )}^{1.4}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 100\ } \end{array}$ | ||
This study | Q |$( f ) = {\rm{\ }}168{f^{0 \cdot 89{\rm{\ }}}}$| | |${( {\frac{{{R_0}}}{R}} )^1}$| | |$0.3 \le f \le 30$| |
Q |$( f ) = {\rm{\ }}146{f^{0 \cdot 91{\rm{\ }}}}$| | $\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^{1.01}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{70}}} )}^{1.01}}{{( {\frac{{70}}{R}} )}^{1.37}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 150\ } \end{array}$ |
Reference . | Q(f) . | Geometrical spreading . | Frequency range (Hz) . |
---|---|---|---|
Motazedian (2006) | |$Q\ ( f ) = {\rm{\ }}87{f^{1 \cdot 46}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $ | |$1 < f \le 10$| |
Zafarani et al. (2012) | |$Q\ ( f ) = {\rm{\ }}101{f^{0 \cdot 8}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $ | |$0.4 < f \le 15$| |
Motaghi & Ghods (2012) | |$Q\ ( f ) = {\rm{\ }}109{f^{0 \cdot 73{\rm{\ }}}}$|. | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1.15}}\ \ \ \ \ R < 80}\\ {{R^{0 \cdot 09}}\ \ \ 80 \le R \le 160}\\ {{R^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R >160} \end{array} \right. $ | |$0.6 \le f \le 12$| |
Farrokhi & Hamzehloo (2017) | |$Q\ ( f ) = {\rm{\ }}83{f^{0 \cdot 99{\rm{\ }}}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 90}\\ {{{( {90R} )}^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R \ge 90} \end{array} \right. $ | |$0.4 < f \le 24$| |
Ahmadzadeh et al. (2019) | Q |$( f ) = {\rm{\ }}162{f^{0 \cdot 61{\rm{\ }}}}$| | |${( {\frac{{{R_0}}}{R}} )^1}$| | |$0.3 < f \le 20$| |
|$Q\ ( f ) = {\rm{\ }}135{f^{0 \cdot 76{\rm{\ }}}}$| | $\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{60}}} )}^1}{{( {\frac{{60}}{R}} )}^{1.4}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 100\ } \end{array}$ | ||
This study | Q |$( f ) = {\rm{\ }}168{f^{0 \cdot 89{\rm{\ }}}}$| | |${( {\frac{{{R_0}}}{R}} )^1}$| | |$0.3 \le f \le 30$| |
Q |$( f ) = {\rm{\ }}146{f^{0 \cdot 91{\rm{\ }}}}$| | $\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^{1.01}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{70}}} )}^{1.01}}{{( {\frac{{70}}{R}} )}^{1.37}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 150\ } \end{array}$ |
Reference . | Q(f) . | Geometrical spreading . | Frequency range (Hz) . |
---|---|---|---|
Motazedian (2006) | |$Q\ ( f ) = {\rm{\ }}87{f^{1 \cdot 46}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $ | |$1 < f \le 10$| |
Zafarani et al. (2012) | |$Q\ ( f ) = {\rm{\ }}101{f^{0 \cdot 8}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $ | |$0.4 < f \le 15$| |
Motaghi & Ghods (2012) | |$Q\ ( f ) = {\rm{\ }}109{f^{0 \cdot 73{\rm{\ }}}}$|. | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1.15}}\ \ \ \ \ R < 80}\\ {{R^{0 \cdot 09}}\ \ \ 80 \le R \le 160}\\ {{R^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R >160} \end{array} \right. $ | |$0.6 \le f \le 12$| |
Farrokhi & Hamzehloo (2017) | |$Q\ ( f ) = {\rm{\ }}83{f^{0 \cdot 99{\rm{\ }}}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 90}\\ {{{( {90R} )}^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R \ge 90} \end{array} \right. $ | |$0.4 < f \le 24$| |
Ahmadzadeh et al. (2019) | Q |$( f ) = {\rm{\ }}162{f^{0 \cdot 61{\rm{\ }}}}$| | |${( {\frac{{{R_0}}}{R}} )^1}$| | |$0.3 < f \le 20$| |
|$Q\ ( f ) = {\rm{\ }}135{f^{0 \cdot 76{\rm{\ }}}}$| | $\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{60}}} )}^1}{{( {\frac{{60}}{R}} )}^{1.4}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 100\ } \end{array}$ | ||
This study | Q |$( f ) = {\rm{\ }}168{f^{0 \cdot 89{\rm{\ }}}}$| | |${( {\frac{{{R_0}}}{R}} )^1}$| | |$0.3 \le f \le 30$| |
Q |$( f ) = {\rm{\ }}146{f^{0 \cdot 91{\rm{\ }}}}$| | $\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^{1.01}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{70}}} )}^{1.01}}{{( {\frac{{70}}{R}} )}^{1.37}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 150\ } \end{array}$ |
Reference . | Q(f) . | Geometrical spreading . | Frequency range (Hz) . |
---|---|---|---|
Motazedian (2006) | |$Q\ ( f ) = {\rm{\ }}87{f^{1 \cdot 46}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $ | |$1 < f \le 10$| |
Zafarani et al. (2012) | |$Q\ ( f ) = {\rm{\ }}101{f^{0 \cdot 8}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $ | |$0.4 < f \le 15$| |
Motaghi & Ghods (2012) | |$Q\ ( f ) = {\rm{\ }}109{f^{0 \cdot 73{\rm{\ }}}}$|. | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1.15}}\ \ \ \ \ R < 80}\\ {{R^{0 \cdot 09}}\ \ \ 80 \le R \le 160}\\ {{R^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R >160} \end{array} \right. $ | |$0.6 \le f \le 12$| |
Farrokhi & Hamzehloo (2017) | |$Q\ ( f ) = {\rm{\ }}83{f^{0 \cdot 99{\rm{\ }}}}$| | $\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 90}\\ {{{( {90R} )}^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R \ge 90} \end{array} \right. $ | |$0.4 < f \le 24$| |
Ahmadzadeh et al. (2019) | Q |$( f ) = {\rm{\ }}162{f^{0 \cdot 61{\rm{\ }}}}$| | |${( {\frac{{{R_0}}}{R}} )^1}$| | |$0.3 < f \le 20$| |
|$Q\ ( f ) = {\rm{\ }}135{f^{0 \cdot 76{\rm{\ }}}}$| | $\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{60}}} )}^1}{{( {\frac{{60}}{R}} )}^{1.4}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 100\ } \end{array}$ | ||
This study | Q |$( f ) = {\rm{\ }}168{f^{0 \cdot 89{\rm{\ }}}}$| | |${( {\frac{{{R_0}}}{R}} )^1}$| | |$0.3 \le f \le 30$| |
Q |$( f ) = {\rm{\ }}146{f^{0 \cdot 91{\rm{\ }}}}$| | $\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^{1.01}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{70}}} )}^{1.01}}{{( {\frac{{70}}{R}} )}^{1.37}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 150\ } \end{array}$ |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.