Table 2.

Attenuation models for Alborz region.

ReferenceQ(f)Geometrical spreadingFrequency range (Hz)
Motazedian (2006)|$Q\ ( f ) = {\rm{\ }}87{f^{1 \cdot 46}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $
|$1 < f \le 10$|
Zafarani et al. (2012)|$Q\ ( f ) = {\rm{\ }}101{f^{0 \cdot 8}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $
|$0.4 < f \le 15$|
Motaghi & Ghods (2012)|$Q\ ( f ) = {\rm{\ }}109{f^{0 \cdot 73{\rm{\ }}}}$|⁠.
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1.15}}\ \ \ \ \ R < 80}\\ {{R^{0 \cdot 09}}\ \ \ 80 \le R \le 160}\\ {{R^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R >160} \end{array} \right. $
|$0.6 \le f \le 12$|
Farrokhi & Hamzehloo (2017)|$Q\ ( f ) = {\rm{\ }}83{f^{0 \cdot 99{\rm{\ }}}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 90}\\ {{{( {90R} )}^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R \ge 90} \end{array} \right. $
|$0.4 < f \le 24$|
Ahmadzadeh et al. (2019)Q |$( f ) = {\rm{\ }}162{f^{0 \cdot 61{\rm{\ }}}}$||${( {\frac{{{R_0}}}{R}} )^1}$||$0.3 < f \le 20$|
|$Q\ ( f ) = {\rm{\ }}135{f^{0 \cdot 76{\rm{\ }}}}$|
$\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{60}}} )}^1}{{( {\frac{{60}}{R}} )}^{1.4}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 100\ } \end{array}$
This studyQ |$( f ) = {\rm{\ }}168{f^{0 \cdot 89{\rm{\ }}}}$||${( {\frac{{{R_0}}}{R}} )^1}$||$0.3 \le f \le 30$|
Q |$( f ) = {\rm{\ }}146{f^{0 \cdot 91{\rm{\ }}}}$|
$\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^{1.01}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{70}}} )}^{1.01}}{{( {\frac{{70}}{R}} )}^{1.37}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 150\ } \end{array}$
ReferenceQ(f)Geometrical spreadingFrequency range (Hz)
Motazedian (2006)|$Q\ ( f ) = {\rm{\ }}87{f^{1 \cdot 46}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $
|$1 < f \le 10$|
Zafarani et al. (2012)|$Q\ ( f ) = {\rm{\ }}101{f^{0 \cdot 8}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $
|$0.4 < f \le 15$|
Motaghi & Ghods (2012)|$Q\ ( f ) = {\rm{\ }}109{f^{0 \cdot 73{\rm{\ }}}}$|⁠.
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1.15}}\ \ \ \ \ R < 80}\\ {{R^{0 \cdot 09}}\ \ \ 80 \le R \le 160}\\ {{R^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R >160} \end{array} \right. $
|$0.6 \le f \le 12$|
Farrokhi & Hamzehloo (2017)|$Q\ ( f ) = {\rm{\ }}83{f^{0 \cdot 99{\rm{\ }}}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 90}\\ {{{( {90R} )}^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R \ge 90} \end{array} \right. $
|$0.4 < f \le 24$|
Ahmadzadeh et al. (2019)Q |$( f ) = {\rm{\ }}162{f^{0 \cdot 61{\rm{\ }}}}$||${( {\frac{{{R_0}}}{R}} )^1}$||$0.3 < f \le 20$|
|$Q\ ( f ) = {\rm{\ }}135{f^{0 \cdot 76{\rm{\ }}}}$|
$\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{60}}} )}^1}{{( {\frac{{60}}{R}} )}^{1.4}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 100\ } \end{array}$
This studyQ |$( f ) = {\rm{\ }}168{f^{0 \cdot 89{\rm{\ }}}}$||${( {\frac{{{R_0}}}{R}} )^1}$||$0.3 \le f \le 30$|
Q |$( f ) = {\rm{\ }}146{f^{0 \cdot 91{\rm{\ }}}}$|
$\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^{1.01}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{70}}} )}^{1.01}}{{( {\frac{{70}}{R}} )}^{1.37}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 150\ } \end{array}$
Table 2.

Attenuation models for Alborz region.

ReferenceQ(f)Geometrical spreadingFrequency range (Hz)
Motazedian (2006)|$Q\ ( f ) = {\rm{\ }}87{f^{1 \cdot 46}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $
|$1 < f \le 10$|
Zafarani et al. (2012)|$Q\ ( f ) = {\rm{\ }}101{f^{0 \cdot 8}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $
|$0.4 < f \le 15$|
Motaghi & Ghods (2012)|$Q\ ( f ) = {\rm{\ }}109{f^{0 \cdot 73{\rm{\ }}}}$|⁠.
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1.15}}\ \ \ \ \ R < 80}\\ {{R^{0 \cdot 09}}\ \ \ 80 \le R \le 160}\\ {{R^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R >160} \end{array} \right. $
|$0.6 \le f \le 12$|
Farrokhi & Hamzehloo (2017)|$Q\ ( f ) = {\rm{\ }}83{f^{0 \cdot 99{\rm{\ }}}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 90}\\ {{{( {90R} )}^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R \ge 90} \end{array} \right. $
|$0.4 < f \le 24$|
Ahmadzadeh et al. (2019)Q |$( f ) = {\rm{\ }}162{f^{0 \cdot 61{\rm{\ }}}}$||${( {\frac{{{R_0}}}{R}} )^1}$||$0.3 < f \le 20$|
|$Q\ ( f ) = {\rm{\ }}135{f^{0 \cdot 76{\rm{\ }}}}$|
$\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{60}}} )}^1}{{( {\frac{{60}}{R}} )}^{1.4}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 100\ } \end{array}$
This studyQ |$( f ) = {\rm{\ }}168{f^{0 \cdot 89{\rm{\ }}}}$||${( {\frac{{{R_0}}}{R}} )^1}$||$0.3 \le f \le 30$|
Q |$( f ) = {\rm{\ }}146{f^{0 \cdot 91{\rm{\ }}}}$|
$\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^{1.01}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{70}}} )}^{1.01}}{{( {\frac{{70}}{R}} )}^{1.37}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 150\ } \end{array}$
ReferenceQ(f)Geometrical spreadingFrequency range (Hz)
Motazedian (2006)|$Q\ ( f ) = {\rm{\ }}87{f^{1 \cdot 46}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $
|$1 < f \le 10$|
Zafarani et al. (2012)|$Q\ ( f ) = {\rm{\ }}101{f^{0 \cdot 8}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 70}\\ {{R^{0 \cdot 2}}\ \ \ 70 \le R \le 150}\\ {{R^{ - 0 \cdot 1}}\ \ \ \ \ \ \ R >150} \end{array} \right. $
|$0.4 < f \le 15$|
Motaghi & Ghods (2012)|$Q\ ( f ) = {\rm{\ }}109{f^{0 \cdot 73{\rm{\ }}}}$|⁠.
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1.15}}\ \ \ \ \ R < 80}\\ {{R^{0 \cdot 09}}\ \ \ 80 \le R \le 160}\\ {{R^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R >160} \end{array} \right. $
|$0.6 \le f \le 12$|
Farrokhi & Hamzehloo (2017)|$Q\ ( f ) = {\rm{\ }}83{f^{0 \cdot 99{\rm{\ }}}}$|
$\left\{ \begin{array}{@{}*{1}{c}@{}} {{R^{ - 1}}\ \ \ \ \ R < 90}\\ {{{( {90R} )}^{ - 0 \cdot 5}}\ \ \ \ \ \ \ R \ge 90} \end{array} \right. $
|$0.4 < f \le 24$|
Ahmadzadeh et al. (2019)Q |$( f ) = {\rm{\ }}162{f^{0 \cdot 61{\rm{\ }}}}$||${( {\frac{{{R_0}}}{R}} )^1}$||$0.3 < f \le 20$|
|$Q\ ( f ) = {\rm{\ }}135{f^{0 \cdot 76{\rm{\ }}}}$|
$\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{60}}} )}^1}{{( {\frac{{60}}{R}} )}^{1.4}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 100\ } \end{array}$
This studyQ |$( f ) = {\rm{\ }}168{f^{0 \cdot 89{\rm{\ }}}}$||${( {\frac{{{R_0}}}{R}} )^1}$||$0.3 \le f \le 30$|
Q |$( f ) = {\rm{\ }}146{f^{0 \cdot 91{\rm{\ }}}}$|
$\begin{array}{@{}*{1}{c}@{}} {{{( {\frac{{{R_0}}}{R}} )}^{1.01}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R < 70\ }\\ {{{( {\frac{{{R_0}}}{{70}}} )}^{1.01}}{{( {\frac{{70}}{R}} )}^{1.37}}.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 70\ \le R \le 150\ } \end{array}$
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close