Table 3.

Marginal estimation results of the proposed nonparametric kernel Nelson-Aalen estimator (NPNA|$_{\rm marg}$|⁠) and the Kaplan–Meier based estimator (KM)

 |$\widehat F_1(t)$||$\widehat F_2(t)$|
 KMNPNA|$_{\rm marg}$|KMNPNA|$_{\rm marg}$|
 Setting 1: |$t=1$|
bias0.1964-0.05440.1509-0.2704
emp var0.03240.03320.04090.0397
est var0.03320.03020.03580.0331
95% cov96.500094.000093.500092.5000
MSE0.03360.03030.03600.0339
rel eff100.000090.9975100.000092.5993
 Setting 1: |$t=2$|
bias-0.0003-0.55230.1674-0.4324
emp var0.04850.04920.04980.0495
est var0.04710.04220.04390.0405
95% cov96.500091.500093.000089.5000
MSE0.04710.04530.04410.0424
rel eff100.000089.6270100.000092.3248
 Setting 2: |$t=30$|
bias0.2651-0.2741-0.0983-0.1784
emp var0.03870.03180.02320.0195
est var0.04020.03230.02070.0176
95% cov93.000094.000092.500093.0000
MSE0.04090.03300.02080.0179
rel eff100.000080.3382100.000084.8547
 Setting 2: |$t=40$|
bias0.0914-0.7803-0.1364-0.3885
emp var0.05710.04390.04480.0400
est var0.05230.04040.04000.0329
95% cov93.000093.000090.000090.0000
MSE0.05240.04650.04020.0344
rel eff100.000077.3532100.000082.2426
 |$\widehat F_1(t)$||$\widehat F_2(t)$|
 KMNPNA|$_{\rm marg}$|KMNPNA|$_{\rm marg}$|
 Setting 1: |$t=1$|
bias0.1964-0.05440.1509-0.2704
emp var0.03240.03320.04090.0397
est var0.03320.03020.03580.0331
95% cov96.500094.000093.500092.5000
MSE0.03360.03030.03600.0339
rel eff100.000090.9975100.000092.5993
 Setting 1: |$t=2$|
bias-0.0003-0.55230.1674-0.4324
emp var0.04850.04920.04980.0495
est var0.04710.04220.04390.0405
95% cov96.500091.500093.000089.5000
MSE0.04710.04530.04410.0424
rel eff100.000089.6270100.000092.3248
 Setting 2: |$t=30$|
bias0.2651-0.2741-0.0983-0.1784
emp var0.03870.03180.02320.0195
est var0.04020.03230.02070.0176
95% cov93.000094.000092.500093.0000
MSE0.04090.03300.02080.0179
rel eff100.000080.3382100.000084.8547
 Setting 2: |$t=40$|
bias0.0914-0.7803-0.1364-0.3885
emp var0.05710.04390.04480.0400
est var0.05230.04040.04000.0329
95% cov93.000093.000090.000090.0000
MSE0.05240.04650.04020.0344
rel eff100.000077.3532100.000082.2426

We report bias, empirical variance (emp var), estimated bootstrap variance (est var), 95% coverage and MSE, and relative efficiency (in terms of variance relative to KM) for |$\widehat{\boldsymbol F}(t)=(\widehat F_1(t),\widehat F_2(t)) $| at specified |$t$|⁠. Results summarized over 200 simulations with 40% censoring. Improved efficiencies from the NPNA|$_{\rm marg}$| relative to KM are boldfaced. All values are multiplied by 100.

Table 3.

Marginal estimation results of the proposed nonparametric kernel Nelson-Aalen estimator (NPNA|$_{\rm marg}$|⁠) and the Kaplan–Meier based estimator (KM)

 |$\widehat F_1(t)$||$\widehat F_2(t)$|
 KMNPNA|$_{\rm marg}$|KMNPNA|$_{\rm marg}$|
 Setting 1: |$t=1$|
bias0.1964-0.05440.1509-0.2704
emp var0.03240.03320.04090.0397
est var0.03320.03020.03580.0331
95% cov96.500094.000093.500092.5000
MSE0.03360.03030.03600.0339
rel eff100.000090.9975100.000092.5993
 Setting 1: |$t=2$|
bias-0.0003-0.55230.1674-0.4324
emp var0.04850.04920.04980.0495
est var0.04710.04220.04390.0405
95% cov96.500091.500093.000089.5000
MSE0.04710.04530.04410.0424
rel eff100.000089.6270100.000092.3248
 Setting 2: |$t=30$|
bias0.2651-0.2741-0.0983-0.1784
emp var0.03870.03180.02320.0195
est var0.04020.03230.02070.0176
95% cov93.000094.000092.500093.0000
MSE0.04090.03300.02080.0179
rel eff100.000080.3382100.000084.8547
 Setting 2: |$t=40$|
bias0.0914-0.7803-0.1364-0.3885
emp var0.05710.04390.04480.0400
est var0.05230.04040.04000.0329
95% cov93.000093.000090.000090.0000
MSE0.05240.04650.04020.0344
rel eff100.000077.3532100.000082.2426
 |$\widehat F_1(t)$||$\widehat F_2(t)$|
 KMNPNA|$_{\rm marg}$|KMNPNA|$_{\rm marg}$|
 Setting 1: |$t=1$|
bias0.1964-0.05440.1509-0.2704
emp var0.03240.03320.04090.0397
est var0.03320.03020.03580.0331
95% cov96.500094.000093.500092.5000
MSE0.03360.03030.03600.0339
rel eff100.000090.9975100.000092.5993
 Setting 1: |$t=2$|
bias-0.0003-0.55230.1674-0.4324
emp var0.04850.04920.04980.0495
est var0.04710.04220.04390.0405
95% cov96.500091.500093.000089.5000
MSE0.04710.04530.04410.0424
rel eff100.000089.6270100.000092.3248
 Setting 2: |$t=30$|
bias0.2651-0.2741-0.0983-0.1784
emp var0.03870.03180.02320.0195
est var0.04020.03230.02070.0176
95% cov93.000094.000092.500093.0000
MSE0.04090.03300.02080.0179
rel eff100.000080.3382100.000084.8547
 Setting 2: |$t=40$|
bias0.0914-0.7803-0.1364-0.3885
emp var0.05710.04390.04480.0400
est var0.05230.04040.04000.0329
95% cov93.000093.000090.000090.0000
MSE0.05240.04650.04020.0344
rel eff100.000077.3532100.000082.2426

We report bias, empirical variance (emp var), estimated bootstrap variance (est var), 95% coverage and MSE, and relative efficiency (in terms of variance relative to KM) for |$\widehat{\boldsymbol F}(t)=(\widehat F_1(t),\widehat F_2(t)) $| at specified |$t$|⁠. Results summarized over 200 simulations with 40% censoring. Improved efficiencies from the NPNA|$_{\rm marg}$| relative to KM are boldfaced. All values are multiplied by 100.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close