Estimates for the two- and three-state models obtained from likelihood (3.5) with complete and incomplete information on the nature of visit; |$E = 5$|, |$n = 1000$|, |$nsim = 500$|
. | . | |$P(R_i = 1) = 1.0$| . | |$P(R_i = 1) = 0.25$| . | ||||
---|---|---|---|---|---|---|---|
. | Value . | EBIAS . | ESE . | ASE . | EBIAS . | ESE . | ASE . |
2-state model | |||||||
|$\log \lambda_{12}$| | 0.0000 | −0.0008 | 0.0261 | 0.0269 | −0.0007 | 0.0263 | 0.0271 |
|$\log \lambda_{21}$| | 1.6094 | 0.0018 | 0.0311 | 0.0299 | 0.0014 | 0.0323 | 0.0308 |
|$\log \alpha_1$| | −0.6931 | −0.0009 | 0.0220 | 0.0220 | 0.0039 | 0.0399 | 0.0402 |
|$\log \alpha_2$| | 1.6094 | −0.0003 | 0.0212 | 0.0208 | −0.0008 | 0.0287 | 0.0283 |
|$\log \alpha_1^S$| | 0.6931 | 0.0000 | 0.0112 | 0.0115 | −0.0013 | 0.0133 | 0.0144 |
|$\log \alpha_2^S$| | 0.6931 | −0.0005 | 0.0199 | 0.0203 | −0.0010 | 0.0255 | 0.0267 |
3-state model | |||||||
|$\log \lambda_{12}$| | 0.0000 | −0.0003 | 0.0314 | 0.0320 | −0.0002 | 0.0315 | 0.0320 |
|$\log \lambda_{23}$| | 1.6094 | 0.0030 | 0.0377 | 0.0380 | 0.0024 | 0.0379 | 0.0392 |
|$\log \alpha_1$| | −0.6931 | −0.0021 | 0.0430 | 0.0451 | −0.0006 | 0.0777 | 0.0828 |
|$\log \alpha_2$| | 1.6094 | 0.0000 | 0.0379 | 0.0380 | −0.0023 | 0.0486 | 0.0505 |
|$\log \alpha_3$| | 1.6094 | −0.0004 | 0.0073 | 0.0073 | −0.0007 | 0.0099 | 0.0099 |
|$\log \alpha_{1}^S$| | 0.6931 | −0.0007 | 0.0212 | 0.0210 | −0.0015 | 0.0289 | 0.0272 |
|$\log \alpha_{2}^S$| | 0.6931 | −0.0027 | 0.0518 | 0.0504 | −0.0015 | 0.0820 | 0.0818 |
|$\log \alpha_{3}^S$| | 0.6931 | −0.0009 | 0.0122 | 0.0117 | −0.0004 | 0.0215 | 0.0206 |
. | . | |$P(R_i = 1) = 1.0$| . | |$P(R_i = 1) = 0.25$| . | ||||
---|---|---|---|---|---|---|---|
. | Value . | EBIAS . | ESE . | ASE . | EBIAS . | ESE . | ASE . |
2-state model | |||||||
|$\log \lambda_{12}$| | 0.0000 | −0.0008 | 0.0261 | 0.0269 | −0.0007 | 0.0263 | 0.0271 |
|$\log \lambda_{21}$| | 1.6094 | 0.0018 | 0.0311 | 0.0299 | 0.0014 | 0.0323 | 0.0308 |
|$\log \alpha_1$| | −0.6931 | −0.0009 | 0.0220 | 0.0220 | 0.0039 | 0.0399 | 0.0402 |
|$\log \alpha_2$| | 1.6094 | −0.0003 | 0.0212 | 0.0208 | −0.0008 | 0.0287 | 0.0283 |
|$\log \alpha_1^S$| | 0.6931 | 0.0000 | 0.0112 | 0.0115 | −0.0013 | 0.0133 | 0.0144 |
|$\log \alpha_2^S$| | 0.6931 | −0.0005 | 0.0199 | 0.0203 | −0.0010 | 0.0255 | 0.0267 |
3-state model | |||||||
|$\log \lambda_{12}$| | 0.0000 | −0.0003 | 0.0314 | 0.0320 | −0.0002 | 0.0315 | 0.0320 |
|$\log \lambda_{23}$| | 1.6094 | 0.0030 | 0.0377 | 0.0380 | 0.0024 | 0.0379 | 0.0392 |
|$\log \alpha_1$| | −0.6931 | −0.0021 | 0.0430 | 0.0451 | −0.0006 | 0.0777 | 0.0828 |
|$\log \alpha_2$| | 1.6094 | 0.0000 | 0.0379 | 0.0380 | −0.0023 | 0.0486 | 0.0505 |
|$\log \alpha_3$| | 1.6094 | −0.0004 | 0.0073 | 0.0073 | −0.0007 | 0.0099 | 0.0099 |
|$\log \alpha_{1}^S$| | 0.6931 | −0.0007 | 0.0212 | 0.0210 | −0.0015 | 0.0289 | 0.0272 |
|$\log \alpha_{2}^S$| | 0.6931 | −0.0027 | 0.0518 | 0.0504 | −0.0015 | 0.0820 | 0.0818 |
|$\log \alpha_{3}^S$| | 0.6931 | −0.0009 | 0.0122 | 0.0117 | −0.0004 | 0.0215 | 0.0206 |
Estimates for the two- and three-state models obtained from likelihood (3.5) with complete and incomplete information on the nature of visit; |$E = 5$|, |$n = 1000$|, |$nsim = 500$|
. | . | |$P(R_i = 1) = 1.0$| . | |$P(R_i = 1) = 0.25$| . | ||||
---|---|---|---|---|---|---|---|
. | Value . | EBIAS . | ESE . | ASE . | EBIAS . | ESE . | ASE . |
2-state model | |||||||
|$\log \lambda_{12}$| | 0.0000 | −0.0008 | 0.0261 | 0.0269 | −0.0007 | 0.0263 | 0.0271 |
|$\log \lambda_{21}$| | 1.6094 | 0.0018 | 0.0311 | 0.0299 | 0.0014 | 0.0323 | 0.0308 |
|$\log \alpha_1$| | −0.6931 | −0.0009 | 0.0220 | 0.0220 | 0.0039 | 0.0399 | 0.0402 |
|$\log \alpha_2$| | 1.6094 | −0.0003 | 0.0212 | 0.0208 | −0.0008 | 0.0287 | 0.0283 |
|$\log \alpha_1^S$| | 0.6931 | 0.0000 | 0.0112 | 0.0115 | −0.0013 | 0.0133 | 0.0144 |
|$\log \alpha_2^S$| | 0.6931 | −0.0005 | 0.0199 | 0.0203 | −0.0010 | 0.0255 | 0.0267 |
3-state model | |||||||
|$\log \lambda_{12}$| | 0.0000 | −0.0003 | 0.0314 | 0.0320 | −0.0002 | 0.0315 | 0.0320 |
|$\log \lambda_{23}$| | 1.6094 | 0.0030 | 0.0377 | 0.0380 | 0.0024 | 0.0379 | 0.0392 |
|$\log \alpha_1$| | −0.6931 | −0.0021 | 0.0430 | 0.0451 | −0.0006 | 0.0777 | 0.0828 |
|$\log \alpha_2$| | 1.6094 | 0.0000 | 0.0379 | 0.0380 | −0.0023 | 0.0486 | 0.0505 |
|$\log \alpha_3$| | 1.6094 | −0.0004 | 0.0073 | 0.0073 | −0.0007 | 0.0099 | 0.0099 |
|$\log \alpha_{1}^S$| | 0.6931 | −0.0007 | 0.0212 | 0.0210 | −0.0015 | 0.0289 | 0.0272 |
|$\log \alpha_{2}^S$| | 0.6931 | −0.0027 | 0.0518 | 0.0504 | −0.0015 | 0.0820 | 0.0818 |
|$\log \alpha_{3}^S$| | 0.6931 | −0.0009 | 0.0122 | 0.0117 | −0.0004 | 0.0215 | 0.0206 |
. | . | |$P(R_i = 1) = 1.0$| . | |$P(R_i = 1) = 0.25$| . | ||||
---|---|---|---|---|---|---|---|
. | Value . | EBIAS . | ESE . | ASE . | EBIAS . | ESE . | ASE . |
2-state model | |||||||
|$\log \lambda_{12}$| | 0.0000 | −0.0008 | 0.0261 | 0.0269 | −0.0007 | 0.0263 | 0.0271 |
|$\log \lambda_{21}$| | 1.6094 | 0.0018 | 0.0311 | 0.0299 | 0.0014 | 0.0323 | 0.0308 |
|$\log \alpha_1$| | −0.6931 | −0.0009 | 0.0220 | 0.0220 | 0.0039 | 0.0399 | 0.0402 |
|$\log \alpha_2$| | 1.6094 | −0.0003 | 0.0212 | 0.0208 | −0.0008 | 0.0287 | 0.0283 |
|$\log \alpha_1^S$| | 0.6931 | 0.0000 | 0.0112 | 0.0115 | −0.0013 | 0.0133 | 0.0144 |
|$\log \alpha_2^S$| | 0.6931 | −0.0005 | 0.0199 | 0.0203 | −0.0010 | 0.0255 | 0.0267 |
3-state model | |||||||
|$\log \lambda_{12}$| | 0.0000 | −0.0003 | 0.0314 | 0.0320 | −0.0002 | 0.0315 | 0.0320 |
|$\log \lambda_{23}$| | 1.6094 | 0.0030 | 0.0377 | 0.0380 | 0.0024 | 0.0379 | 0.0392 |
|$\log \alpha_1$| | −0.6931 | −0.0021 | 0.0430 | 0.0451 | −0.0006 | 0.0777 | 0.0828 |
|$\log \alpha_2$| | 1.6094 | 0.0000 | 0.0379 | 0.0380 | −0.0023 | 0.0486 | 0.0505 |
|$\log \alpha_3$| | 1.6094 | −0.0004 | 0.0073 | 0.0073 | −0.0007 | 0.0099 | 0.0099 |
|$\log \alpha_{1}^S$| | 0.6931 | −0.0007 | 0.0212 | 0.0210 | −0.0015 | 0.0289 | 0.0272 |
|$\log \alpha_{2}^S$| | 0.6931 | −0.0027 | 0.0518 | 0.0504 | −0.0015 | 0.0820 | 0.0818 |
|$\log \alpha_{3}^S$| | 0.6931 | −0.0009 | 0.0122 | 0.0117 | −0.0004 | 0.0215 | 0.0206 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.