Table 3

Ranking-based evaluation of the predictive performance of different multi-label classifiers

One errorCoverageAverage Precision
MLCDForest0.150312.55200.8024
DBPNN0.205215.47860.7249
RAkEL [36]0.286514.28690.7382
MLkNN [36]0.107511.58040.8155
BR [36]0.295914.57130.7274
BPMLL [36]0.103412.56040.7867
One errorCoverageAverage Precision
MLCDForest0.150312.55200.8024
DBPNN0.205215.47860.7249
RAkEL [36]0.286514.28690.7382
MLkNN [36]0.107511.58040.8155
BR [36]0.295914.57130.7274
BPMLL [36]0.103412.56040.7867
Table 3

Ranking-based evaluation of the predictive performance of different multi-label classifiers

One errorCoverageAverage Precision
MLCDForest0.150312.55200.8024
DBPNN0.205215.47860.7249
RAkEL [36]0.286514.28690.7382
MLkNN [36]0.107511.58040.8155
BR [36]0.295914.57130.7274
BPMLL [36]0.103412.56040.7867
One errorCoverageAverage Precision
MLCDForest0.150312.55200.8024
DBPNN0.205215.47860.7249
RAkEL [36]0.286514.28690.7382
MLkNN [36]0.107511.58040.8155
BR [36]0.295914.57130.7274
BPMLL [36]0.103412.56040.7867
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close