Example-based evaluation of the predictive performance of different multi-label classifiers
. | Hamming loss . | Accuracy . | Precision . | Recall . | F1-measure . | Subset accuracy . |
---|---|---|---|---|---|---|
MLCDForest | 0.1145 | 0.6978 | 0.8402 | 0.7400 | 0. 6978 | 0.3347 |
DBPNN | 0.2118 | 0.4811 | 0.8258 | 0.4999 | 0.5997 | 0.1636 |
RAkEL [36] | 0.2032 | 0.5471 | 0.7781 | 0.6133 | 0.6409 | 0.1980 |
MLkNN [36] | 0.1970 | 0.5610 | 0.7599 | 0.6486 | 0.6627 | 0.1807 |
BR [36] | 0.2048 | 0.5441 | 0.7804 | 0.6050 | 0.6405 | 0. 1965 |
BPMLL [36] | 0.2241 | 0.5191 | 0.6900 | 0.6660 | 0.6412 | 0.1006 |
. | Hamming loss . | Accuracy . | Precision . | Recall . | F1-measure . | Subset accuracy . |
---|---|---|---|---|---|---|
MLCDForest | 0.1145 | 0.6978 | 0.8402 | 0.7400 | 0. 6978 | 0.3347 |
DBPNN | 0.2118 | 0.4811 | 0.8258 | 0.4999 | 0.5997 | 0.1636 |
RAkEL [36] | 0.2032 | 0.5471 | 0.7781 | 0.6133 | 0.6409 | 0.1980 |
MLkNN [36] | 0.1970 | 0.5610 | 0.7599 | 0.6486 | 0.6627 | 0.1807 |
BR [36] | 0.2048 | 0.5441 | 0.7804 | 0.6050 | 0.6405 | 0. 1965 |
BPMLL [36] | 0.2241 | 0.5191 | 0.6900 | 0.6660 | 0.6412 | 0.1006 |
Example-based evaluation of the predictive performance of different multi-label classifiers
. | Hamming loss . | Accuracy . | Precision . | Recall . | F1-measure . | Subset accuracy . |
---|---|---|---|---|---|---|
MLCDForest | 0.1145 | 0.6978 | 0.8402 | 0.7400 | 0. 6978 | 0.3347 |
DBPNN | 0.2118 | 0.4811 | 0.8258 | 0.4999 | 0.5997 | 0.1636 |
RAkEL [36] | 0.2032 | 0.5471 | 0.7781 | 0.6133 | 0.6409 | 0.1980 |
MLkNN [36] | 0.1970 | 0.5610 | 0.7599 | 0.6486 | 0.6627 | 0.1807 |
BR [36] | 0.2048 | 0.5441 | 0.7804 | 0.6050 | 0.6405 | 0. 1965 |
BPMLL [36] | 0.2241 | 0.5191 | 0.6900 | 0.6660 | 0.6412 | 0.1006 |
. | Hamming loss . | Accuracy . | Precision . | Recall . | F1-measure . | Subset accuracy . |
---|---|---|---|---|---|---|
MLCDForest | 0.1145 | 0.6978 | 0.8402 | 0.7400 | 0. 6978 | 0.3347 |
DBPNN | 0.2118 | 0.4811 | 0.8258 | 0.4999 | 0.5997 | 0.1636 |
RAkEL [36] | 0.2032 | 0.5471 | 0.7781 | 0.6133 | 0.6409 | 0.1980 |
MLkNN [36] | 0.1970 | 0.5610 | 0.7599 | 0.6486 | 0.6627 | 0.1807 |
BR [36] | 0.2048 | 0.5441 | 0.7804 | 0.6050 | 0.6405 | 0. 1965 |
BPMLL [36] | 0.2241 | 0.5191 | 0.6900 | 0.6660 | 0.6412 | 0.1006 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.