Table 1

Example-based evaluation of the predictive performance of different multi-label classifiers

Hamming lossAccuracyPrecisionRecallF1-measureSubset accuracy
MLCDForest0.11450.69780.84020.74000. 69780.3347
DBPNN0.21180.48110.82580.49990.59970.1636
RAkEL [36]0.20320.54710.77810.61330.64090.1980
MLkNN [36]0.19700.56100.75990.64860.66270.1807
BR [36]0.20480.54410.78040.60500.64050. 1965
BPMLL [36]0.22410.51910.69000.66600.64120.1006
Hamming lossAccuracyPrecisionRecallF1-measureSubset accuracy
MLCDForest0.11450.69780.84020.74000. 69780.3347
DBPNN0.21180.48110.82580.49990.59970.1636
RAkEL [36]0.20320.54710.77810.61330.64090.1980
MLkNN [36]0.19700.56100.75990.64860.66270.1807
BR [36]0.20480.54410.78040.60500.64050. 1965
BPMLL [36]0.22410.51910.69000.66600.64120.1006
Table 1

Example-based evaluation of the predictive performance of different multi-label classifiers

Hamming lossAccuracyPrecisionRecallF1-measureSubset accuracy
MLCDForest0.11450.69780.84020.74000. 69780.3347
DBPNN0.21180.48110.82580.49990.59970.1636
RAkEL [36]0.20320.54710.77810.61330.64090.1980
MLkNN [36]0.19700.56100.75990.64860.66270.1807
BR [36]0.20480.54410.78040.60500.64050. 1965
BPMLL [36]0.22410.51910.69000.66600.64120.1006
Hamming lossAccuracyPrecisionRecallF1-measureSubset accuracy
MLCDForest0.11450.69780.84020.74000. 69780.3347
DBPNN0.21180.48110.82580.49990.59970.1636
RAkEL [36]0.20320.54710.77810.61330.64090.1980
MLkNN [36]0.19700.56100.75990.64860.66270.1807
BR [36]0.20480.54410.78040.60500.64050. 1965
BPMLL [36]0.22410.51910.69000.66600.64120.1006
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close