. | Scenario . | NN . | RF . | CNN . | Lasso . | Enet . | MDeep . |
---|---|---|---|---|---|---|---|
Sensitivity | S1 | 0.6620 | 0.6534 | 0.6932 | 0.7208 | 0.7290 | 0.8188 |
S2 | 0.6794 | 0.6730 | 0.6932 | 0.7480 | 0.7460 | 0.7904 | |
Specificity | S1 | 0.6692 | 0.6586 | 0.6962 | 0.7346 | 0.7350 | 0.8254 |
S2 | 0.6582 | 0.6508 | 0.6958 | 0.7432 | 0.7442 | 0.7720 | |
Accuracy | S1 | 0.6656 | 0.6560 | 0.6947 | 0.7277 | 0.7320 | 0.8221 |
S2 | 0.6688 | 0.6619 | 0.6945 | 0.7456 | 0.7451 | 0.7812 | |
Precision | S1 | 0.6709 | 0.6594 | 0.6976 | 0.7387 | 0.7406 | 0.8271 |
S2 | 0.6702 | 0.6593 | 0.6951 | 0.7437 | 0.7455 | 0.7777 | |
MCC | S1 | 0.3354 | 0.3139 | 0.3914 | 0.4588 | 0.4665 | 0.6468 |
S2 | 0.3420 | 0.3250 | 0.3909 | 0.4935 | 0.4921 | 0.5644 | |
F1 score | S1 | 0.6622 | 0.6544 | 0.6933 | 0.7251 | 0.7310 | 0.8210 |
S2 | 0.6712 | 0.6649 | 0.6923 | 0.7429 | 0.7443 | 0.7827 |
. | Scenario . | NN . | RF . | CNN . | Lasso . | Enet . | MDeep . |
---|---|---|---|---|---|---|---|
Sensitivity | S1 | 0.6620 | 0.6534 | 0.6932 | 0.7208 | 0.7290 | 0.8188 |
S2 | 0.6794 | 0.6730 | 0.6932 | 0.7480 | 0.7460 | 0.7904 | |
Specificity | S1 | 0.6692 | 0.6586 | 0.6962 | 0.7346 | 0.7350 | 0.8254 |
S2 | 0.6582 | 0.6508 | 0.6958 | 0.7432 | 0.7442 | 0.7720 | |
Accuracy | S1 | 0.6656 | 0.6560 | 0.6947 | 0.7277 | 0.7320 | 0.8221 |
S2 | 0.6688 | 0.6619 | 0.6945 | 0.7456 | 0.7451 | 0.7812 | |
Precision | S1 | 0.6709 | 0.6594 | 0.6976 | 0.7387 | 0.7406 | 0.8271 |
S2 | 0.6702 | 0.6593 | 0.6951 | 0.7437 | 0.7455 | 0.7777 | |
MCC | S1 | 0.3354 | 0.3139 | 0.3914 | 0.4588 | 0.4665 | 0.6468 |
S2 | 0.3420 | 0.3250 | 0.3909 | 0.4935 | 0.4921 | 0.5644 | |
F1 score | S1 | 0.6622 | 0.6544 | 0.6933 | 0.7251 | 0.7310 | 0.8210 |
S2 | 0.6712 | 0.6649 | 0.6923 | 0.7429 | 0.7443 | 0.7827 |
Top performed method in each metric is bold.
. | Scenario . | NN . | RF . | CNN . | Lasso . | Enet . | MDeep . |
---|---|---|---|---|---|---|---|
Sensitivity | S1 | 0.6620 | 0.6534 | 0.6932 | 0.7208 | 0.7290 | 0.8188 |
S2 | 0.6794 | 0.6730 | 0.6932 | 0.7480 | 0.7460 | 0.7904 | |
Specificity | S1 | 0.6692 | 0.6586 | 0.6962 | 0.7346 | 0.7350 | 0.8254 |
S2 | 0.6582 | 0.6508 | 0.6958 | 0.7432 | 0.7442 | 0.7720 | |
Accuracy | S1 | 0.6656 | 0.6560 | 0.6947 | 0.7277 | 0.7320 | 0.8221 |
S2 | 0.6688 | 0.6619 | 0.6945 | 0.7456 | 0.7451 | 0.7812 | |
Precision | S1 | 0.6709 | 0.6594 | 0.6976 | 0.7387 | 0.7406 | 0.8271 |
S2 | 0.6702 | 0.6593 | 0.6951 | 0.7437 | 0.7455 | 0.7777 | |
MCC | S1 | 0.3354 | 0.3139 | 0.3914 | 0.4588 | 0.4665 | 0.6468 |
S2 | 0.3420 | 0.3250 | 0.3909 | 0.4935 | 0.4921 | 0.5644 | |
F1 score | S1 | 0.6622 | 0.6544 | 0.6933 | 0.7251 | 0.7310 | 0.8210 |
S2 | 0.6712 | 0.6649 | 0.6923 | 0.7429 | 0.7443 | 0.7827 |
. | Scenario . | NN . | RF . | CNN . | Lasso . | Enet . | MDeep . |
---|---|---|---|---|---|---|---|
Sensitivity | S1 | 0.6620 | 0.6534 | 0.6932 | 0.7208 | 0.7290 | 0.8188 |
S2 | 0.6794 | 0.6730 | 0.6932 | 0.7480 | 0.7460 | 0.7904 | |
Specificity | S1 | 0.6692 | 0.6586 | 0.6962 | 0.7346 | 0.7350 | 0.8254 |
S2 | 0.6582 | 0.6508 | 0.6958 | 0.7432 | 0.7442 | 0.7720 | |
Accuracy | S1 | 0.6656 | 0.6560 | 0.6947 | 0.7277 | 0.7320 | 0.8221 |
S2 | 0.6688 | 0.6619 | 0.6945 | 0.7456 | 0.7451 | 0.7812 | |
Precision | S1 | 0.6709 | 0.6594 | 0.6976 | 0.7387 | 0.7406 | 0.8271 |
S2 | 0.6702 | 0.6593 | 0.6951 | 0.7437 | 0.7455 | 0.7777 | |
MCC | S1 | 0.3354 | 0.3139 | 0.3914 | 0.4588 | 0.4665 | 0.6468 |
S2 | 0.3420 | 0.3250 | 0.3909 | 0.4935 | 0.4921 | 0.5644 | |
F1 score | S1 | 0.6622 | 0.6544 | 0.6933 | 0.7251 | 0.7310 | 0.8210 |
S2 | 0.6712 | 0.6649 | 0.6923 | 0.7429 | 0.7443 | 0.7827 |
Top performed method in each metric is bold.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.