The performance of models developed on alternate dataset using hybrid features that combines composition with binary profile and motif
Features (Parameters) . | Training dataset . | Validation dataset . | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sen . | Spc . | Acc . | MCC . | AUROC . | Sen . | Spc . | Acc . | MCC . | AUROC . | |
AAC (ETree Ntree = 400) | 90.23 | 89.97 | 90.10 | 0.80 | 0.97 | 92.27 | 91.75 | 92.01 | 0.84 | 0.97 |
DPC (ETree Ntree = 400) | 90.75 | 88.82 | 89.78 | 0.80 | 0.96 | 90.72 | 90.21 | 90.46 | 0.81 | 0.96 |
AAC + Bin_N15C15 (g = 0.01, c = 4) | 93.38 | 90.58 | 91.88 | 0.84 | 0.98 | 92.36 | 93.42 | 92.91 | 0.86 | 0.97 |
DPC + Bin_N15C15 (g = 0.001, c = 10) | 92.06 | 91.40 | 91.70 | 0.83 | 0.97 | 91.67 | 87.50 | 89.53 | 0.79 | 0.95 |
AAC + Motif (g = 0.005, c = 1) | 92.40 | 91.11 | 91.75 | 0.84 | 0.98 | 91.24 | 89.69 | 90.46 | 0.81 | 0.97 |
DPC + Motif (g = 0.001, c = 1) | 90.85 | 89.82 | 90.34 | 0.81 | 0.97 | 89.69 | 90.21 | 89.95 | 0.80 | 0.95 |
Features (Parameters) . | Training dataset . | Validation dataset . | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sen . | Spc . | Acc . | MCC . | AUROC . | Sen . | Spc . | Acc . | MCC . | AUROC . | |
AAC (ETree Ntree = 400) | 90.23 | 89.97 | 90.10 | 0.80 | 0.97 | 92.27 | 91.75 | 92.01 | 0.84 | 0.97 |
DPC (ETree Ntree = 400) | 90.75 | 88.82 | 89.78 | 0.80 | 0.96 | 90.72 | 90.21 | 90.46 | 0.81 | 0.96 |
AAC + Bin_N15C15 (g = 0.01, c = 4) | 93.38 | 90.58 | 91.88 | 0.84 | 0.98 | 92.36 | 93.42 | 92.91 | 0.86 | 0.97 |
DPC + Bin_N15C15 (g = 0.001, c = 10) | 92.06 | 91.40 | 91.70 | 0.83 | 0.97 | 91.67 | 87.50 | 89.53 | 0.79 | 0.95 |
AAC + Motif (g = 0.005, c = 1) | 92.40 | 91.11 | 91.75 | 0.84 | 0.98 | 91.24 | 89.69 | 90.46 | 0.81 | 0.97 |
DPC + Motif (g = 0.001, c = 1) | 90.85 | 89.82 | 90.34 | 0.81 | 0.97 | 89.69 | 90.21 | 89.95 | 0.80 | 0.95 |
Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.
The performance of models developed on alternate dataset using hybrid features that combines composition with binary profile and motif
Features (Parameters) . | Training dataset . | Validation dataset . | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sen . | Spc . | Acc . | MCC . | AUROC . | Sen . | Spc . | Acc . | MCC . | AUROC . | |
AAC (ETree Ntree = 400) | 90.23 | 89.97 | 90.10 | 0.80 | 0.97 | 92.27 | 91.75 | 92.01 | 0.84 | 0.97 |
DPC (ETree Ntree = 400) | 90.75 | 88.82 | 89.78 | 0.80 | 0.96 | 90.72 | 90.21 | 90.46 | 0.81 | 0.96 |
AAC + Bin_N15C15 (g = 0.01, c = 4) | 93.38 | 90.58 | 91.88 | 0.84 | 0.98 | 92.36 | 93.42 | 92.91 | 0.86 | 0.97 |
DPC + Bin_N15C15 (g = 0.001, c = 10) | 92.06 | 91.40 | 91.70 | 0.83 | 0.97 | 91.67 | 87.50 | 89.53 | 0.79 | 0.95 |
AAC + Motif (g = 0.005, c = 1) | 92.40 | 91.11 | 91.75 | 0.84 | 0.98 | 91.24 | 89.69 | 90.46 | 0.81 | 0.97 |
DPC + Motif (g = 0.001, c = 1) | 90.85 | 89.82 | 90.34 | 0.81 | 0.97 | 89.69 | 90.21 | 89.95 | 0.80 | 0.95 |
Features (Parameters) . | Training dataset . | Validation dataset . | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sen . | Spc . | Acc . | MCC . | AUROC . | Sen . | Spc . | Acc . | MCC . | AUROC . | |
AAC (ETree Ntree = 400) | 90.23 | 89.97 | 90.10 | 0.80 | 0.97 | 92.27 | 91.75 | 92.01 | 0.84 | 0.97 |
DPC (ETree Ntree = 400) | 90.75 | 88.82 | 89.78 | 0.80 | 0.96 | 90.72 | 90.21 | 90.46 | 0.81 | 0.96 |
AAC + Bin_N15C15 (g = 0.01, c = 4) | 93.38 | 90.58 | 91.88 | 0.84 | 0.98 | 92.36 | 93.42 | 92.91 | 0.86 | 0.97 |
DPC + Bin_N15C15 (g = 0.001, c = 10) | 92.06 | 91.40 | 91.70 | 0.83 | 0.97 | 91.67 | 87.50 | 89.53 | 0.79 | 0.95 |
AAC + Motif (g = 0.005, c = 1) | 92.40 | 91.11 | 91.75 | 0.84 | 0.98 | 91.24 | 89.69 | 90.46 | 0.81 | 0.97 |
DPC + Motif (g = 0.001, c = 1) | 90.85 | 89.82 | 90.34 | 0.81 | 0.97 | 89.69 | 90.21 | 89.95 | 0.80 | 0.95 |
Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.