Table 8

The performance of models developed on alternate dataset using hybrid features that combines composition with binary profile and motif

Features (Parameters)Training datasetValidation dataset
SenSpcAccMCCAUROCSenSpcAccMCCAUROC
AAC (ETree Ntree = 400)90.2389.9790.100.800.9792.2791.7592.010.840.97
DPC (ETree Ntree = 400)90.7588.8289.780.800.9690.7290.2190.460.810.96
AAC + Bin_N15C15 (g = 0.01, c = 4)93.3890.5891.880.840.9892.3693.4292.910.860.97
DPC + Bin_N15C15 (g = 0.001, c = 10)92.0691.4091.700.830.9791.6787.5089.530.790.95
AAC + Motif (g = 0.005, c = 1)92.4091.1191.750.840.9891.2489.6990.460.810.97
DPC + Motif (g = 0.001, c = 1)90.8589.8290.340.810.9789.6990.2189.950.800.95
Features (Parameters)Training datasetValidation dataset
SenSpcAccMCCAUROCSenSpcAccMCCAUROC
AAC (ETree Ntree = 400)90.2389.9790.100.800.9792.2791.7592.010.840.97
DPC (ETree Ntree = 400)90.7588.8289.780.800.9690.7290.2190.460.810.96
AAC + Bin_N15C15 (g = 0.01, c = 4)93.3890.5891.880.840.9892.3693.4292.910.860.97
DPC + Bin_N15C15 (g = 0.001, c = 10)92.0691.4091.700.830.9791.6787.5089.530.790.95
AAC + Motif (g = 0.005, c = 1)92.4091.1191.750.840.9891.2489.6990.460.810.97
DPC + Motif (g = 0.001, c = 1)90.8589.8290.340.810.9789.6990.2189.950.800.95

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

Table 8

The performance of models developed on alternate dataset using hybrid features that combines composition with binary profile and motif

Features (Parameters)Training datasetValidation dataset
SenSpcAccMCCAUROCSenSpcAccMCCAUROC
AAC (ETree Ntree = 400)90.2389.9790.100.800.9792.2791.7592.010.840.97
DPC (ETree Ntree = 400)90.7588.8289.780.800.9690.7290.2190.460.810.96
AAC + Bin_N15C15 (g = 0.01, c = 4)93.3890.5891.880.840.9892.3693.4292.910.860.97
DPC + Bin_N15C15 (g = 0.001, c = 10)92.0691.4091.700.830.9791.6787.5089.530.790.95
AAC + Motif (g = 0.005, c = 1)92.4091.1191.750.840.9891.2489.6990.460.810.97
DPC + Motif (g = 0.001, c = 1)90.8589.8290.340.810.9789.6990.2189.950.800.95
Features (Parameters)Training datasetValidation dataset
SenSpcAccMCCAUROCSenSpcAccMCCAUROC
AAC (ETree Ntree = 400)90.2389.9790.100.800.9792.2791.7592.010.840.97
DPC (ETree Ntree = 400)90.7588.8289.780.800.9690.7290.2190.460.810.96
AAC + Bin_N15C15 (g = 0.01, c = 4)93.3890.5891.880.840.9892.3693.4292.910.860.97
DPC + Bin_N15C15 (g = 0.001, c = 10)92.0691.4091.700.830.9791.6787.5089.530.790.95
AAC + Motif (g = 0.005, c = 1)92.4091.1191.750.840.9891.2489.6990.460.810.97
DPC + Motif (g = 0.001, c = 1)90.8589.8290.340.810.9789.6990.2189.950.800.95

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close