The performance of DPC-based models developed using different machine learning techniques on alternate dataset
Techniques (Parameters) . | Training dataset . | Validation dataset . | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sen . | Spc . | Acc . | MCC . | AUROC . | Sen . | Spc . | Acc . | MCC . | AUROC . | |
SVC (g = 0.001, c = 2) | 90.36 | 87.53 | 88.95 | 0.78 | 0.96 | 90.72 | 87.11 | 88.92 | 0.78 | 0.95 |
RF (Ntree = 1000) | 88.56 | 87.53 | 88.05 | 0.76 | 0.95 | 89.18 | 87.63 | 88.40 | 0.77 | 0.95 |
ETree (Ntree = 400) | 90.75 | 88.82 | 89.78 | 0.80 | 0.96 | 90.72 | 90.21 | 90.46 | 0.81 | 0.96 |
MLP (activation = logistic) | 87.79 | 85.22 | 86.50 | 0.73 | 0.93 | 86.08 | 88.66 | 87.37 | 0.75 | 0.94 |
KNN (neighbors = 9) | 91.77 | 80.46 | 86.12 | 0.73 | 0.94 | 94.33 | 74.23 | 84.28 | 0.70 | 0.94 |
Ridge (alpha = 0) | 84.19 | 84.96 | 84.58 | 0.69 | 0.90 | 85.05 | 83.51 | 84.28 | 0.69 | 0.91 |
Techniques (Parameters) . | Training dataset . | Validation dataset . | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sen . | Spc . | Acc . | MCC . | AUROC . | Sen . | Spc . | Acc . | MCC . | AUROC . | |
SVC (g = 0.001, c = 2) | 90.36 | 87.53 | 88.95 | 0.78 | 0.96 | 90.72 | 87.11 | 88.92 | 0.78 | 0.95 |
RF (Ntree = 1000) | 88.56 | 87.53 | 88.05 | 0.76 | 0.95 | 89.18 | 87.63 | 88.40 | 0.77 | 0.95 |
ETree (Ntree = 400) | 90.75 | 88.82 | 89.78 | 0.80 | 0.96 | 90.72 | 90.21 | 90.46 | 0.81 | 0.96 |
MLP (activation = logistic) | 87.79 | 85.22 | 86.50 | 0.73 | 0.93 | 86.08 | 88.66 | 87.37 | 0.75 | 0.94 |
KNN (neighbors = 9) | 91.77 | 80.46 | 86.12 | 0.73 | 0.94 | 94.33 | 74.23 | 84.28 | 0.70 | 0.94 |
Ridge (alpha = 0) | 84.19 | 84.96 | 84.58 | 0.69 | 0.90 | 85.05 | 83.51 | 84.28 | 0.69 | 0.91 |
Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.
The performance of DPC-based models developed using different machine learning techniques on alternate dataset
Techniques (Parameters) . | Training dataset . | Validation dataset . | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sen . | Spc . | Acc . | MCC . | AUROC . | Sen . | Spc . | Acc . | MCC . | AUROC . | |
SVC (g = 0.001, c = 2) | 90.36 | 87.53 | 88.95 | 0.78 | 0.96 | 90.72 | 87.11 | 88.92 | 0.78 | 0.95 |
RF (Ntree = 1000) | 88.56 | 87.53 | 88.05 | 0.76 | 0.95 | 89.18 | 87.63 | 88.40 | 0.77 | 0.95 |
ETree (Ntree = 400) | 90.75 | 88.82 | 89.78 | 0.80 | 0.96 | 90.72 | 90.21 | 90.46 | 0.81 | 0.96 |
MLP (activation = logistic) | 87.79 | 85.22 | 86.50 | 0.73 | 0.93 | 86.08 | 88.66 | 87.37 | 0.75 | 0.94 |
KNN (neighbors = 9) | 91.77 | 80.46 | 86.12 | 0.73 | 0.94 | 94.33 | 74.23 | 84.28 | 0.70 | 0.94 |
Ridge (alpha = 0) | 84.19 | 84.96 | 84.58 | 0.69 | 0.90 | 85.05 | 83.51 | 84.28 | 0.69 | 0.91 |
Techniques (Parameters) . | Training dataset . | Validation dataset . | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sen . | Spc . | Acc . | MCC . | AUROC . | Sen . | Spc . | Acc . | MCC . | AUROC . | |
SVC (g = 0.001, c = 2) | 90.36 | 87.53 | 88.95 | 0.78 | 0.96 | 90.72 | 87.11 | 88.92 | 0.78 | 0.95 |
RF (Ntree = 1000) | 88.56 | 87.53 | 88.05 | 0.76 | 0.95 | 89.18 | 87.63 | 88.40 | 0.77 | 0.95 |
ETree (Ntree = 400) | 90.75 | 88.82 | 89.78 | 0.80 | 0.96 | 90.72 | 90.21 | 90.46 | 0.81 | 0.96 |
MLP (activation = logistic) | 87.79 | 85.22 | 86.50 | 0.73 | 0.93 | 86.08 | 88.66 | 87.37 | 0.75 | 0.94 |
KNN (neighbors = 9) | 91.77 | 80.46 | 86.12 | 0.73 | 0.94 | 94.33 | 74.23 | 84.28 | 0.70 | 0.94 |
Ridge (alpha = 0) | 84.19 | 84.96 | 84.58 | 0.69 | 0.90 | 85.05 | 83.51 | 84.28 | 0.69 | 0.91 |
Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.