Table 6

The performance of DPC-based models developed using different machine learning techniques on alternate dataset

Techniques (Parameters)Training datasetValidation dataset
SenSpcAccMCCAUROCSenSpcAccMCCAUROC
SVC (g = 0.001, c = 2)90.3687.5388.950.780.9690.7287.1188.920.780.95
RF (Ntree = 1000)88.5687.5388.050.760.9589.1887.6388.400.770.95
ETree (Ntree = 400)90.7588.8289.780.800.9690.7290.2190.460.810.96
MLP (activation = logistic)87.7985.2286.500.730.9386.0888.6687.370.750.94
KNN (neighbors = 9)91.7780.4686.120.730.9494.3374.2384.280.700.94
Ridge (alpha = 0)84.1984.9684.580.690.9085.0583.5184.280.690.91
Techniques (Parameters)Training datasetValidation dataset
SenSpcAccMCCAUROCSenSpcAccMCCAUROC
SVC (g = 0.001, c = 2)90.3687.5388.950.780.9690.7287.1188.920.780.95
RF (Ntree = 1000)88.5687.5388.050.760.9589.1887.6388.400.770.95
ETree (Ntree = 400)90.7588.8289.780.800.9690.7290.2190.460.810.96
MLP (activation = logistic)87.7985.2286.500.730.9386.0888.6687.370.750.94
KNN (neighbors = 9)91.7780.4686.120.730.9494.3374.2384.280.700.94
Ridge (alpha = 0)84.1984.9684.580.690.9085.0583.5184.280.690.91

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

Table 6

The performance of DPC-based models developed using different machine learning techniques on alternate dataset

Techniques (Parameters)Training datasetValidation dataset
SenSpcAccMCCAUROCSenSpcAccMCCAUROC
SVC (g = 0.001, c = 2)90.3687.5388.950.780.9690.7287.1188.920.780.95
RF (Ntree = 1000)88.5687.5388.050.760.9589.1887.6388.400.770.95
ETree (Ntree = 400)90.7588.8289.780.800.9690.7290.2190.460.810.96
MLP (activation = logistic)87.7985.2286.500.730.9386.0888.6687.370.750.94
KNN (neighbors = 9)91.7780.4686.120.730.9494.3374.2384.280.700.94
Ridge (alpha = 0)84.1984.9684.580.690.9085.0583.5184.280.690.91
Techniques (Parameters)Training datasetValidation dataset
SenSpcAccMCCAUROCSenSpcAccMCCAUROC
SVC (g = 0.001, c = 2)90.3687.5388.950.780.9690.7287.1188.920.780.95
RF (Ntree = 1000)88.5687.5388.050.760.9589.1887.6388.400.770.95
ETree (Ntree = 400)90.7588.8289.780.800.9690.7290.2190.460.810.96
MLP (activation = logistic)87.7985.2286.500.730.9386.0888.6687.370.750.94
KNN (neighbors = 9)91.7780.4686.120.730.9494.3374.2384.280.700.94
Ridge (alpha = 0)84.1984.9684.580.690.9085.0583.5184.280.690.91

Sen: sensitivity, Spc: specificity, Acc: accuracy, MCC: Matthews correlation coefficient, AUROC: area under the receiver operating characteristic curve.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close