Notation . | Description . |
---|---|
|$\mathcal {S}_{N} = \left\lbrace r_1, \dots , r_N \right\rbrace$| | Set of N random seeds rn of probability space |
|$\boldsymbol{y}(r_n)\equiv \boldsymbol{y}_n$| | Random column vector of size p at seed rn |
|$\mathbb {E}\left[ \boldsymbol{y} \right]\equiv \boldsymbol{\mu _y}$| | Expectation value of random vector |$\boldsymbol{y}$| |
|$[[ m,n ]]$| | Set of integers from m to n |
|$\boldsymbol{M}^{\boldsymbol{T}}$| | Transpose of real matrix |$\boldsymbol{M}$| |
|$\boldsymbol{M}^{\boldsymbol{\dagger }}$| | Moore–Penrose pseudo-inverse of matrix |$\boldsymbol{M}$| |
|$\det \left(\boldsymbol{M}\right)$| | Determinant of matrix |$\boldsymbol{M}$| |
|$\mathbb {E} \left[\left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right]\right) \left(\boldsymbol{x} - \mathbb {E} \left[\boldsymbol{x}\right]\right)^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{xx}}}$| | Variance-covariance matrix of random vector |$\boldsymbol{x}$| |
|$\mathbb {E} \left[ \left(\boldsymbol{y} - \mathbb {E} \left[ \boldsymbol{y} \right] \right) \left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right] \right) ^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{yx}}}$| | Cross-covariance matrix of random vectors |$\boldsymbol{y}$| and |$\boldsymbol{x}$| |
|$\sigma _{y}^2$| | Variance of scalar random variable y |
|$\boldsymbol{0}_{p,q}$| and |$\boldsymbol{0}_p$| | Null matrix in |$\mathbb {R}^{p \times q}$| and null vector in |$\mathbb {R}^{p}$| |
|$\boldsymbol{I}_p$| | Square p × p identity matrix |
Notation . | Description . |
---|---|
|$\mathcal {S}_{N} = \left\lbrace r_1, \dots , r_N \right\rbrace$| | Set of N random seeds rn of probability space |
|$\boldsymbol{y}(r_n)\equiv \boldsymbol{y}_n$| | Random column vector of size p at seed rn |
|$\mathbb {E}\left[ \boldsymbol{y} \right]\equiv \boldsymbol{\mu _y}$| | Expectation value of random vector |$\boldsymbol{y}$| |
|$[[ m,n ]]$| | Set of integers from m to n |
|$\boldsymbol{M}^{\boldsymbol{T}}$| | Transpose of real matrix |$\boldsymbol{M}$| |
|$\boldsymbol{M}^{\boldsymbol{\dagger }}$| | Moore–Penrose pseudo-inverse of matrix |$\boldsymbol{M}$| |
|$\det \left(\boldsymbol{M}\right)$| | Determinant of matrix |$\boldsymbol{M}$| |
|$\mathbb {E} \left[\left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right]\right) \left(\boldsymbol{x} - \mathbb {E} \left[\boldsymbol{x}\right]\right)^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{xx}}}$| | Variance-covariance matrix of random vector |$\boldsymbol{x}$| |
|$\mathbb {E} \left[ \left(\boldsymbol{y} - \mathbb {E} \left[ \boldsymbol{y} \right] \right) \left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right] \right) ^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{yx}}}$| | Cross-covariance matrix of random vectors |$\boldsymbol{y}$| and |$\boldsymbol{x}$| |
|$\sigma _{y}^2$| | Variance of scalar random variable y |
|$\boldsymbol{0}_{p,q}$| and |$\boldsymbol{0}_p$| | Null matrix in |$\mathbb {R}^{p \times q}$| and null vector in |$\mathbb {R}^{p}$| |
|$\boldsymbol{I}_p$| | Square p × p identity matrix |
Notation . | Description . |
---|---|
|$\mathcal {S}_{N} = \left\lbrace r_1, \dots , r_N \right\rbrace$| | Set of N random seeds rn of probability space |
|$\boldsymbol{y}(r_n)\equiv \boldsymbol{y}_n$| | Random column vector of size p at seed rn |
|$\mathbb {E}\left[ \boldsymbol{y} \right]\equiv \boldsymbol{\mu _y}$| | Expectation value of random vector |$\boldsymbol{y}$| |
|$[[ m,n ]]$| | Set of integers from m to n |
|$\boldsymbol{M}^{\boldsymbol{T}}$| | Transpose of real matrix |$\boldsymbol{M}$| |
|$\boldsymbol{M}^{\boldsymbol{\dagger }}$| | Moore–Penrose pseudo-inverse of matrix |$\boldsymbol{M}$| |
|$\det \left(\boldsymbol{M}\right)$| | Determinant of matrix |$\boldsymbol{M}$| |
|$\mathbb {E} \left[\left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right]\right) \left(\boldsymbol{x} - \mathbb {E} \left[\boldsymbol{x}\right]\right)^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{xx}}}$| | Variance-covariance matrix of random vector |$\boldsymbol{x}$| |
|$\mathbb {E} \left[ \left(\boldsymbol{y} - \mathbb {E} \left[ \boldsymbol{y} \right] \right) \left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right] \right) ^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{yx}}}$| | Cross-covariance matrix of random vectors |$\boldsymbol{y}$| and |$\boldsymbol{x}$| |
|$\sigma _{y}^2$| | Variance of scalar random variable y |
|$\boldsymbol{0}_{p,q}$| and |$\boldsymbol{0}_p$| | Null matrix in |$\mathbb {R}^{p \times q}$| and null vector in |$\mathbb {R}^{p}$| |
|$\boldsymbol{I}_p$| | Square p × p identity matrix |
Notation . | Description . |
---|---|
|$\mathcal {S}_{N} = \left\lbrace r_1, \dots , r_N \right\rbrace$| | Set of N random seeds rn of probability space |
|$\boldsymbol{y}(r_n)\equiv \boldsymbol{y}_n$| | Random column vector of size p at seed rn |
|$\mathbb {E}\left[ \boldsymbol{y} \right]\equiv \boldsymbol{\mu _y}$| | Expectation value of random vector |$\boldsymbol{y}$| |
|$[[ m,n ]]$| | Set of integers from m to n |
|$\boldsymbol{M}^{\boldsymbol{T}}$| | Transpose of real matrix |$\boldsymbol{M}$| |
|$\boldsymbol{M}^{\boldsymbol{\dagger }}$| | Moore–Penrose pseudo-inverse of matrix |$\boldsymbol{M}$| |
|$\det \left(\boldsymbol{M}\right)$| | Determinant of matrix |$\boldsymbol{M}$| |
|$\mathbb {E} \left[\left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right]\right) \left(\boldsymbol{x} - \mathbb {E} \left[\boldsymbol{x}\right]\right)^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{xx}}}$| | Variance-covariance matrix of random vector |$\boldsymbol{x}$| |
|$\mathbb {E} \left[ \left(\boldsymbol{y} - \mathbb {E} \left[ \boldsymbol{y} \right] \right) \left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right] \right) ^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{yx}}}$| | Cross-covariance matrix of random vectors |$\boldsymbol{y}$| and |$\boldsymbol{x}$| |
|$\sigma _{y}^2$| | Variance of scalar random variable y |
|$\boldsymbol{0}_{p,q}$| and |$\boldsymbol{0}_p$| | Null matrix in |$\mathbb {R}^{p \times q}$| and null vector in |$\mathbb {R}^{p}$| |
|$\boldsymbol{I}_p$| | Square p × p identity matrix |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.