Table 1.

Mathematical notation and definitions.

NotationDescription
|$\mathcal {S}_{N} = \left\lbrace r_1, \dots , r_N \right\rbrace$|Set of N random seeds rn of probability space
|$\boldsymbol{y}(r_n)\equiv \boldsymbol{y}_n$|Random column vector of size p at seed rn
|$\mathbb {E}\left[ \boldsymbol{y} \right]\equiv \boldsymbol{\mu _y}$|Expectation value of random vector |$\boldsymbol{y}$|
|$[[ m,n ]]$|Set of integers from m to n
|$\boldsymbol{M}^{\boldsymbol{T}}$|Transpose of real matrix |$\boldsymbol{M}$|
|$\boldsymbol{M}^{\boldsymbol{\dagger }}$|Moore–Penrose pseudo-inverse of matrix |$\boldsymbol{M}$|
|$\det \left(\boldsymbol{M}\right)$|Determinant of matrix |$\boldsymbol{M}$|
|$\mathbb {E} \left[\left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right]\right) \left(\boldsymbol{x} - \mathbb {E} \left[\boldsymbol{x}\right]\right)^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{xx}}}$|Variance-covariance matrix of random vector |$\boldsymbol{x}$|
|$\mathbb {E} \left[ \left(\boldsymbol{y} - \mathbb {E} \left[ \boldsymbol{y} \right] \right) \left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right] \right) ^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{yx}}}$|Cross-covariance matrix of random vectors |$\boldsymbol{y}$| and |$\boldsymbol{x}$|
|$\sigma _{y}^2$|Variance of scalar random variable y
|$\boldsymbol{0}_{p,q}$| and |$\boldsymbol{0}_p$|Null matrix in |$\mathbb {R}^{p \times q}$| and null vector in |$\mathbb {R}^{p}$|
|$\boldsymbol{I}_p$|Square p × p identity matrix
NotationDescription
|$\mathcal {S}_{N} = \left\lbrace r_1, \dots , r_N \right\rbrace$|Set of N random seeds rn of probability space
|$\boldsymbol{y}(r_n)\equiv \boldsymbol{y}_n$|Random column vector of size p at seed rn
|$\mathbb {E}\left[ \boldsymbol{y} \right]\equiv \boldsymbol{\mu _y}$|Expectation value of random vector |$\boldsymbol{y}$|
|$[[ m,n ]]$|Set of integers from m to n
|$\boldsymbol{M}^{\boldsymbol{T}}$|Transpose of real matrix |$\boldsymbol{M}$|
|$\boldsymbol{M}^{\boldsymbol{\dagger }}$|Moore–Penrose pseudo-inverse of matrix |$\boldsymbol{M}$|
|$\det \left(\boldsymbol{M}\right)$|Determinant of matrix |$\boldsymbol{M}$|
|$\mathbb {E} \left[\left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right]\right) \left(\boldsymbol{x} - \mathbb {E} \left[\boldsymbol{x}\right]\right)^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{xx}}}$|Variance-covariance matrix of random vector |$\boldsymbol{x}$|
|$\mathbb {E} \left[ \left(\boldsymbol{y} - \mathbb {E} \left[ \boldsymbol{y} \right] \right) \left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right] \right) ^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{yx}}}$|Cross-covariance matrix of random vectors |$\boldsymbol{y}$| and |$\boldsymbol{x}$|
|$\sigma _{y}^2$|Variance of scalar random variable y
|$\boldsymbol{0}_{p,q}$| and |$\boldsymbol{0}_p$|Null matrix in |$\mathbb {R}^{p \times q}$| and null vector in |$\mathbb {R}^{p}$|
|$\boldsymbol{I}_p$|Square p × p identity matrix
Table 1.

Mathematical notation and definitions.

NotationDescription
|$\mathcal {S}_{N} = \left\lbrace r_1, \dots , r_N \right\rbrace$|Set of N random seeds rn of probability space
|$\boldsymbol{y}(r_n)\equiv \boldsymbol{y}_n$|Random column vector of size p at seed rn
|$\mathbb {E}\left[ \boldsymbol{y} \right]\equiv \boldsymbol{\mu _y}$|Expectation value of random vector |$\boldsymbol{y}$|
|$[[ m,n ]]$|Set of integers from m to n
|$\boldsymbol{M}^{\boldsymbol{T}}$|Transpose of real matrix |$\boldsymbol{M}$|
|$\boldsymbol{M}^{\boldsymbol{\dagger }}$|Moore–Penrose pseudo-inverse of matrix |$\boldsymbol{M}$|
|$\det \left(\boldsymbol{M}\right)$|Determinant of matrix |$\boldsymbol{M}$|
|$\mathbb {E} \left[\left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right]\right) \left(\boldsymbol{x} - \mathbb {E} \left[\boldsymbol{x}\right]\right)^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{xx}}}$|Variance-covariance matrix of random vector |$\boldsymbol{x}$|
|$\mathbb {E} \left[ \left(\boldsymbol{y} - \mathbb {E} \left[ \boldsymbol{y} \right] \right) \left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right] \right) ^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{yx}}}$|Cross-covariance matrix of random vectors |$\boldsymbol{y}$| and |$\boldsymbol{x}$|
|$\sigma _{y}^2$|Variance of scalar random variable y
|$\boldsymbol{0}_{p,q}$| and |$\boldsymbol{0}_p$|Null matrix in |$\mathbb {R}^{p \times q}$| and null vector in |$\mathbb {R}^{p}$|
|$\boldsymbol{I}_p$|Square p × p identity matrix
NotationDescription
|$\mathcal {S}_{N} = \left\lbrace r_1, \dots , r_N \right\rbrace$|Set of N random seeds rn of probability space
|$\boldsymbol{y}(r_n)\equiv \boldsymbol{y}_n$|Random column vector of size p at seed rn
|$\mathbb {E}\left[ \boldsymbol{y} \right]\equiv \boldsymbol{\mu _y}$|Expectation value of random vector |$\boldsymbol{y}$|
|$[[ m,n ]]$|Set of integers from m to n
|$\boldsymbol{M}^{\boldsymbol{T}}$|Transpose of real matrix |$\boldsymbol{M}$|
|$\boldsymbol{M}^{\boldsymbol{\dagger }}$|Moore–Penrose pseudo-inverse of matrix |$\boldsymbol{M}$|
|$\det \left(\boldsymbol{M}\right)$|Determinant of matrix |$\boldsymbol{M}$|
|$\mathbb {E} \left[\left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right]\right) \left(\boldsymbol{x} - \mathbb {E} \left[\boldsymbol{x}\right]\right)^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{xx}}}$|Variance-covariance matrix of random vector |$\boldsymbol{x}$|
|$\mathbb {E} \left[ \left(\boldsymbol{y} - \mathbb {E} \left[ \boldsymbol{y} \right] \right) \left(\boldsymbol{x} - \mathbb {E} \left[ \boldsymbol{x}\right] \right) ^{\boldsymbol{T}} \right]\, \equiv \boldsymbol{\Sigma _{\boldsymbol{yx}}}$|Cross-covariance matrix of random vectors |$\boldsymbol{y}$| and |$\boldsymbol{x}$|
|$\sigma _{y}^2$|Variance of scalar random variable y
|$\boldsymbol{0}_{p,q}$| and |$\boldsymbol{0}_p$|Null matrix in |$\mathbb {R}^{p \times q}$| and null vector in |$\mathbb {R}^{p}$|
|$\boldsymbol{I}_p$|Square p × p identity matrix
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close