Table 2

Optimizing with stratification by functional domains for prediction of SCN1A missense variants

AlgorithmsN, C-TerminusDomain linkerS1–S3Voltage sensorPore region
CutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCC
SIFT≤0.0564.20.350≤0.0560.50.335≤0.0574.80.446≤0.0588.90.254≤0.0588.00.521
MASS>1.93563.40.336>1.93544.20.335>1.93579.30.534>1.93585.90.153>1.93587.00.585
PP2-HDIV>0.565.90.400>0.563.40.444>0.574.80.426>0.587.90.125>0.586.10.440
PP2-HVAR>0.569.90.458>0.569.20.463>0.577.00.480>0.588.90.254>0.586.70.482
PROVEAN≤−2.565.90.400≤−2.552.90.414≤−2.574.80.446≤−2.585.90.065≤−2.592.20.674
SNAP2>064.20.350>062.80.440>074.80.430>090.90.406>090.70.603
MutPred2>0.572.40.483>0.569.80.497>0.570.40.322>0.589.90.286>0.590.10.550
I-Mutant 2.0<056.90.220<033.10.178<060.0−0.033<076.80.019<080.70.100
FATHMM-U<−3.069.10.382<−3.069.20.355<−3.079.30.596<−3.065.70.241<−3.065.40.351
FATHMM-W<−1.548.8NA<−1.533.10.252<−1.564.4NA<−1.588.9NA<−1.585.2NA
After optimization of cutoff value for with stratification
SIFT=072.40.455=077.30.384<0.0278.50.418≤0.0289.90.404≤0.0889.80.573
MASS>3.56582.90.677>3.86584.90.506>2.9183.70.648>0.4990.90.406>1.689.20.606
PP2-HDIV>0.92273.20.504>0.99780.80.469>0.89076.30.462>0.87289.90.359>0.7787.30.531
PP2-HVAR>0.96378.00.562>0.94782.00.533>0.47478.50.516>0.6790.90.4490.82387.30.574
PROVEAN<−2.03566.70.426≤−6.10379.70.326<−3.41481.50.586≤−1.89188.8NA≤−2.19792.50.685
SNAP2>5379.70.601>5786.60.589>6285.90.702>3292.90.580>−1191.00.604
MutPred2>0.72075.60.512>0.80587.20.600>0.85985.20.677>0.70090.90.417>0.44890.70.574
I-Mutant 2.0<−0.3763.40.312<−3.3977.9NA<2.864.4NA<2.3088.9NA<2.0485.2NA
FATHMM-U<−2.3270.70.420<−5.7379.10.215<−2.0383.70.637<−3.9388.9NA<4.9285.2NA
FATHMM-W<−4.1973.20.474<−3.8484.90.561<−4.4165.20.203<−4.1388.9NA<−3.9987.70.440
Results in total after multiple optimizations
Multiple-step strategyAcc = 90.5%, sensitivity = 92.6%, specificity = 86.6%, MCC = 0.792 (n = 861)
AlgorithmsN, C-TerminusDomain linkerS1–S3Voltage sensorPore region
CutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCC
SIFT≤0.0564.20.350≤0.0560.50.335≤0.0574.80.446≤0.0588.90.254≤0.0588.00.521
MASS>1.93563.40.336>1.93544.20.335>1.93579.30.534>1.93585.90.153>1.93587.00.585
PP2-HDIV>0.565.90.400>0.563.40.444>0.574.80.426>0.587.90.125>0.586.10.440
PP2-HVAR>0.569.90.458>0.569.20.463>0.577.00.480>0.588.90.254>0.586.70.482
PROVEAN≤−2.565.90.400≤−2.552.90.414≤−2.574.80.446≤−2.585.90.065≤−2.592.20.674
SNAP2>064.20.350>062.80.440>074.80.430>090.90.406>090.70.603
MutPred2>0.572.40.483>0.569.80.497>0.570.40.322>0.589.90.286>0.590.10.550
I-Mutant 2.0<056.90.220<033.10.178<060.0−0.033<076.80.019<080.70.100
FATHMM-U<−3.069.10.382<−3.069.20.355<−3.079.30.596<−3.065.70.241<−3.065.40.351
FATHMM-W<−1.548.8NA<−1.533.10.252<−1.564.4NA<−1.588.9NA<−1.585.2NA
After optimization of cutoff value for with stratification
SIFT=072.40.455=077.30.384<0.0278.50.418≤0.0289.90.404≤0.0889.80.573
MASS>3.56582.90.677>3.86584.90.506>2.9183.70.648>0.4990.90.406>1.689.20.606
PP2-HDIV>0.92273.20.504>0.99780.80.469>0.89076.30.462>0.87289.90.359>0.7787.30.531
PP2-HVAR>0.96378.00.562>0.94782.00.533>0.47478.50.516>0.6790.90.4490.82387.30.574
PROVEAN<−2.03566.70.426≤−6.10379.70.326<−3.41481.50.586≤−1.89188.8NA≤−2.19792.50.685
SNAP2>5379.70.601>5786.60.589>6285.90.702>3292.90.580>−1191.00.604
MutPred2>0.72075.60.512>0.80587.20.600>0.85985.20.677>0.70090.90.417>0.44890.70.574
I-Mutant 2.0<−0.3763.40.312<−3.3977.9NA<2.864.4NA<2.3088.9NA<2.0485.2NA
FATHMM-U<−2.3270.70.420<−5.7379.10.215<−2.0383.70.637<−3.9388.9NA<4.9285.2NA
FATHMM-W<−4.1973.20.474<−3.8484.90.561<−4.4165.20.203<−4.1388.9NA<−3.9987.70.440
Results in total after multiple optimizations
Multiple-step strategyAcc = 90.5%, sensitivity = 92.6%, specificity = 86.6%, MCC = 0.792 (n = 861)

The data in bold highlights the best tool for prediction. Acc, accuracy; MCC, Matthews correlation coefficient; NA, not applicable.

Table 2

Optimizing with stratification by functional domains for prediction of SCN1A missense variants

AlgorithmsN, C-TerminusDomain linkerS1–S3Voltage sensorPore region
CutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCC
SIFT≤0.0564.20.350≤0.0560.50.335≤0.0574.80.446≤0.0588.90.254≤0.0588.00.521
MASS>1.93563.40.336>1.93544.20.335>1.93579.30.534>1.93585.90.153>1.93587.00.585
PP2-HDIV>0.565.90.400>0.563.40.444>0.574.80.426>0.587.90.125>0.586.10.440
PP2-HVAR>0.569.90.458>0.569.20.463>0.577.00.480>0.588.90.254>0.586.70.482
PROVEAN≤−2.565.90.400≤−2.552.90.414≤−2.574.80.446≤−2.585.90.065≤−2.592.20.674
SNAP2>064.20.350>062.80.440>074.80.430>090.90.406>090.70.603
MutPred2>0.572.40.483>0.569.80.497>0.570.40.322>0.589.90.286>0.590.10.550
I-Mutant 2.0<056.90.220<033.10.178<060.0−0.033<076.80.019<080.70.100
FATHMM-U<−3.069.10.382<−3.069.20.355<−3.079.30.596<−3.065.70.241<−3.065.40.351
FATHMM-W<−1.548.8NA<−1.533.10.252<−1.564.4NA<−1.588.9NA<−1.585.2NA
After optimization of cutoff value for with stratification
SIFT=072.40.455=077.30.384<0.0278.50.418≤0.0289.90.404≤0.0889.80.573
MASS>3.56582.90.677>3.86584.90.506>2.9183.70.648>0.4990.90.406>1.689.20.606
PP2-HDIV>0.92273.20.504>0.99780.80.469>0.89076.30.462>0.87289.90.359>0.7787.30.531
PP2-HVAR>0.96378.00.562>0.94782.00.533>0.47478.50.516>0.6790.90.4490.82387.30.574
PROVEAN<−2.03566.70.426≤−6.10379.70.326<−3.41481.50.586≤−1.89188.8NA≤−2.19792.50.685
SNAP2>5379.70.601>5786.60.589>6285.90.702>3292.90.580>−1191.00.604
MutPred2>0.72075.60.512>0.80587.20.600>0.85985.20.677>0.70090.90.417>0.44890.70.574
I-Mutant 2.0<−0.3763.40.312<−3.3977.9NA<2.864.4NA<2.3088.9NA<2.0485.2NA
FATHMM-U<−2.3270.70.420<−5.7379.10.215<−2.0383.70.637<−3.9388.9NA<4.9285.2NA
FATHMM-W<−4.1973.20.474<−3.8484.90.561<−4.4165.20.203<−4.1388.9NA<−3.9987.70.440
Results in total after multiple optimizations
Multiple-step strategyAcc = 90.5%, sensitivity = 92.6%, specificity = 86.6%, MCC = 0.792 (n = 861)
AlgorithmsN, C-TerminusDomain linkerS1–S3Voltage sensorPore region
CutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCCCutoffAcc (%)MCC
SIFT≤0.0564.20.350≤0.0560.50.335≤0.0574.80.446≤0.0588.90.254≤0.0588.00.521
MASS>1.93563.40.336>1.93544.20.335>1.93579.30.534>1.93585.90.153>1.93587.00.585
PP2-HDIV>0.565.90.400>0.563.40.444>0.574.80.426>0.587.90.125>0.586.10.440
PP2-HVAR>0.569.90.458>0.569.20.463>0.577.00.480>0.588.90.254>0.586.70.482
PROVEAN≤−2.565.90.400≤−2.552.90.414≤−2.574.80.446≤−2.585.90.065≤−2.592.20.674
SNAP2>064.20.350>062.80.440>074.80.430>090.90.406>090.70.603
MutPred2>0.572.40.483>0.569.80.497>0.570.40.322>0.589.90.286>0.590.10.550
I-Mutant 2.0<056.90.220<033.10.178<060.0−0.033<076.80.019<080.70.100
FATHMM-U<−3.069.10.382<−3.069.20.355<−3.079.30.596<−3.065.70.241<−3.065.40.351
FATHMM-W<−1.548.8NA<−1.533.10.252<−1.564.4NA<−1.588.9NA<−1.585.2NA
After optimization of cutoff value for with stratification
SIFT=072.40.455=077.30.384<0.0278.50.418≤0.0289.90.404≤0.0889.80.573
MASS>3.56582.90.677>3.86584.90.506>2.9183.70.648>0.4990.90.406>1.689.20.606
PP2-HDIV>0.92273.20.504>0.99780.80.469>0.89076.30.462>0.87289.90.359>0.7787.30.531
PP2-HVAR>0.96378.00.562>0.94782.00.533>0.47478.50.516>0.6790.90.4490.82387.30.574
PROVEAN<−2.03566.70.426≤−6.10379.70.326<−3.41481.50.586≤−1.89188.8NA≤−2.19792.50.685
SNAP2>5379.70.601>5786.60.589>6285.90.702>3292.90.580>−1191.00.604
MutPred2>0.72075.60.512>0.80587.20.600>0.85985.20.677>0.70090.90.417>0.44890.70.574
I-Mutant 2.0<−0.3763.40.312<−3.3977.9NA<2.864.4NA<2.3088.9NA<2.0485.2NA
FATHMM-U<−2.3270.70.420<−5.7379.10.215<−2.0383.70.637<−3.9388.9NA<4.9285.2NA
FATHMM-W<−4.1973.20.474<−3.8484.90.561<−4.4165.20.203<−4.1388.9NA<−3.9987.70.440
Results in total after multiple optimizations
Multiple-step strategyAcc = 90.5%, sensitivity = 92.6%, specificity = 86.6%, MCC = 0.792 (n = 861)

The data in bold highlights the best tool for prediction. Acc, accuracy; MCC, Matthews correlation coefficient; NA, not applicable.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close