. | |$\skew{4}\tilde{p}_A^+ (s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_A^-(s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_B^+ (s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_B^-(s_x,z,\omega )$| . |
---|---|---|---|---|
z = z0 | |$\skew{5}\tilde{f}_1^+(s_x,z_0,z_F,\omega )$| | |$\skew{5}\tilde{f}_1^-(s_x,z_0,z_F,\omega )$| | |$\frac{\rho (z_0)}{2s_z (s_x,z_0)}$| | |$\frac{\rho (z_0)\skew{4}\tilde{R}^\cup (s_x,z_0,\omega )}{2s_z (s_x,z_0)}$| |
z = zF | |$\frac{\rho (z_F)}{2s_z (s_x,z_F)}$| | 0 | |$\skew{4}\tilde{G}^+ (s_x,z_F,z_0,\omega )$| | |$\skew{4}\tilde{G}^-(s_x,z_F,z_0,\omega )$| |
. | |$\skew{4}\tilde{p}_A^+ (s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_A^-(s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_B^+ (s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_B^-(s_x,z,\omega )$| . |
---|---|---|---|---|
z = z0 | |$\skew{5}\tilde{f}_1^+(s_x,z_0,z_F,\omega )$| | |$\skew{5}\tilde{f}_1^-(s_x,z_0,z_F,\omega )$| | |$\frac{\rho (z_0)}{2s_z (s_x,z_0)}$| | |$\frac{\rho (z_0)\skew{4}\tilde{R}^\cup (s_x,z_0,\omega )}{2s_z (s_x,z_0)}$| |
z = zF | |$\frac{\rho (z_F)}{2s_z (s_x,z_F)}$| | 0 | |$\skew{4}\tilde{G}^+ (s_x,z_F,z_0,\omega )$| | |$\skew{4}\tilde{G}^-(s_x,z_F,z_0,\omega )$| |
. | |$\skew{4}\tilde{p}_A^+ (s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_A^-(s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_B^+ (s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_B^-(s_x,z,\omega )$| . |
---|---|---|---|---|
z = z0 | |$\skew{5}\tilde{f}_1^+(s_x,z_0,z_F,\omega )$| | |$\skew{5}\tilde{f}_1^-(s_x,z_0,z_F,\omega )$| | |$\frac{\rho (z_0)}{2s_z (s_x,z_0)}$| | |$\frac{\rho (z_0)\skew{4}\tilde{R}^\cup (s_x,z_0,\omega )}{2s_z (s_x,z_0)}$| |
z = zF | |$\frac{\rho (z_F)}{2s_z (s_x,z_F)}$| | 0 | |$\skew{4}\tilde{G}^+ (s_x,z_F,z_0,\omega )$| | |$\skew{4}\tilde{G}^-(s_x,z_F,z_0,\omega )$| |
. | |$\skew{4}\tilde{p}_A^+ (s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_A^-(s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_B^+ (s_x,z,\omega )$| . | |$\skew{4}\tilde{p}_B^-(s_x,z,\omega )$| . |
---|---|---|---|---|
z = z0 | |$\skew{5}\tilde{f}_1^+(s_x,z_0,z_F,\omega )$| | |$\skew{5}\tilde{f}_1^-(s_x,z_0,z_F,\omega )$| | |$\frac{\rho (z_0)}{2s_z (s_x,z_0)}$| | |$\frac{\rho (z_0)\skew{4}\tilde{R}^\cup (s_x,z_0,\omega )}{2s_z (s_x,z_0)}$| |
z = zF | |$\frac{\rho (z_F)}{2s_z (s_x,z_F)}$| | 0 | |$\skew{4}\tilde{G}^+ (s_x,z_F,z_0,\omega )$| | |$\skew{4}\tilde{G}^-(s_x,z_F,z_0,\omega )$| |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.