Table 2.

Within and between estimates from a multilevel structural equation model of socioeconomic status (SES), exposure to other smokers (OS), exposure to places where smoking is allowed (SA), cigarette availability (CA), and smoking lapse (SMK)

Variables(path)Est.SDpa[95% CI]b
Within
 OSijCAij(aw1).244.017.000[.210, .277]*
SMKi(j → j + 1)(c'w1).101.029.000[.039, .153]*
 SAijCAij(aw2).264.010.000[.245, .283]*
SMKi(j → j+1)(c'w2).087.017.000[.056, .118]*
 CAijSMKi(j → j+1)(bw).396.013.000[.372, .423]*
 SMKi(j-1 → j)SMKi(j → j+1)(ar1).344.019.000[.307, .375]*
OSij.032.002.000[.028, .035]*
SAij.102.005.000[.092, .110]*
CAij.360.006.000[.350, .371]*
 OSijwithSAij.040.001.000[.038, .042]*
Between
 SESiOSi(ab1)−.027.006.000[−.039, −.015]*
SAi(ab2)−.046.017.001[−.084, −.016]*
CAi(ab3)−.085.039.017[−.155, −.007]*
SMKi(c'b)−.064.033.025[−.127, .001]
 OSiCAi(ab4)1.126.353.000[.457, 1.849]*
SMKi(bb1)−.048.286.431[−.597, .514]
 SAiCAi(ab5).900.122.000[.688, 1.160]*
SMKi(bb2).267.107.005[.058, .460]*
 CAiSMKi(bb3).287.043.000[.201, .370]*
 OSiwithSAi.024.006.000[.012, .034]*
Latent Variablec
 SESiIncomei1.000.000.000[1.000, 1.000]
Collegei.374.075.000[.233, .531]*
Insuredi.817.314.000[.487, 1.552]*
Employedi.466.085.000[.303, .641]*
Variables(path)Est.SDpa[95% CI]b
Within
 OSijCAij(aw1).244.017.000[.210, .277]*
SMKi(j → j + 1)(c'w1).101.029.000[.039, .153]*
 SAijCAij(aw2).264.010.000[.245, .283]*
SMKi(j → j+1)(c'w2).087.017.000[.056, .118]*
 CAijSMKi(j → j+1)(bw).396.013.000[.372, .423]*
 SMKi(j-1 → j)SMKi(j → j+1)(ar1).344.019.000[.307, .375]*
OSij.032.002.000[.028, .035]*
SAij.102.005.000[.092, .110]*
CAij.360.006.000[.350, .371]*
 OSijwithSAij.040.001.000[.038, .042]*
Between
 SESiOSi(ab1)−.027.006.000[−.039, −.015]*
SAi(ab2)−.046.017.001[−.084, −.016]*
CAi(ab3)−.085.039.017[−.155, −.007]*
SMKi(c'b)−.064.033.025[−.127, .001]
 OSiCAi(ab4)1.126.353.000[.457, 1.849]*
SMKi(bb1)−.048.286.431[−.597, .514]
 SAiCAi(ab5).900.122.000[.688, 1.160]*
SMKi(bb2).267.107.005[.058, .460]*
 CAiSMKi(bb3).287.043.000[.201, .370]*
 OSiwithSAi.024.006.000[.012, .034]*
Latent Variablec
 SESiIncomei1.000.000.000[1.000, 1.000]
Collegei.374.075.000[.233, .531]*
Insuredi.817.314.000[.487, 1.552]*
Employedi.466.085.000[.303, .641]*

i indexes participants (N = 365) and j indexes EMAs (N = 31,800); Est. = undstandardized estimate (probit); SD = posterior standard deviation; p = Bayesian one-tailed p-value; a = for positive values, the one-tailed p-value is the proportion of posterior distribution above 0; b = the 2.5 and 97.5 percentiles in the asymmetric posterior distribution, credibility intervals (CI) that do not include 0 noted with an asterisk (*); c = continuous latent variable for SES (M = 0, SD = 1).

Table 2.

Within and between estimates from a multilevel structural equation model of socioeconomic status (SES), exposure to other smokers (OS), exposure to places where smoking is allowed (SA), cigarette availability (CA), and smoking lapse (SMK)

Variables(path)Est.SDpa[95% CI]b
Within
 OSijCAij(aw1).244.017.000[.210, .277]*
SMKi(j → j + 1)(c'w1).101.029.000[.039, .153]*
 SAijCAij(aw2).264.010.000[.245, .283]*
SMKi(j → j+1)(c'w2).087.017.000[.056, .118]*
 CAijSMKi(j → j+1)(bw).396.013.000[.372, .423]*
 SMKi(j-1 → j)SMKi(j → j+1)(ar1).344.019.000[.307, .375]*
OSij.032.002.000[.028, .035]*
SAij.102.005.000[.092, .110]*
CAij.360.006.000[.350, .371]*
 OSijwithSAij.040.001.000[.038, .042]*
Between
 SESiOSi(ab1)−.027.006.000[−.039, −.015]*
SAi(ab2)−.046.017.001[−.084, −.016]*
CAi(ab3)−.085.039.017[−.155, −.007]*
SMKi(c'b)−.064.033.025[−.127, .001]
 OSiCAi(ab4)1.126.353.000[.457, 1.849]*
SMKi(bb1)−.048.286.431[−.597, .514]
 SAiCAi(ab5).900.122.000[.688, 1.160]*
SMKi(bb2).267.107.005[.058, .460]*
 CAiSMKi(bb3).287.043.000[.201, .370]*
 OSiwithSAi.024.006.000[.012, .034]*
Latent Variablec
 SESiIncomei1.000.000.000[1.000, 1.000]
Collegei.374.075.000[.233, .531]*
Insuredi.817.314.000[.487, 1.552]*
Employedi.466.085.000[.303, .641]*
Variables(path)Est.SDpa[95% CI]b
Within
 OSijCAij(aw1).244.017.000[.210, .277]*
SMKi(j → j + 1)(c'w1).101.029.000[.039, .153]*
 SAijCAij(aw2).264.010.000[.245, .283]*
SMKi(j → j+1)(c'w2).087.017.000[.056, .118]*
 CAijSMKi(j → j+1)(bw).396.013.000[.372, .423]*
 SMKi(j-1 → j)SMKi(j → j+1)(ar1).344.019.000[.307, .375]*
OSij.032.002.000[.028, .035]*
SAij.102.005.000[.092, .110]*
CAij.360.006.000[.350, .371]*
 OSijwithSAij.040.001.000[.038, .042]*
Between
 SESiOSi(ab1)−.027.006.000[−.039, −.015]*
SAi(ab2)−.046.017.001[−.084, −.016]*
CAi(ab3)−.085.039.017[−.155, −.007]*
SMKi(c'b)−.064.033.025[−.127, .001]
 OSiCAi(ab4)1.126.353.000[.457, 1.849]*
SMKi(bb1)−.048.286.431[−.597, .514]
 SAiCAi(ab5).900.122.000[.688, 1.160]*
SMKi(bb2).267.107.005[.058, .460]*
 CAiSMKi(bb3).287.043.000[.201, .370]*
 OSiwithSAi.024.006.000[.012, .034]*
Latent Variablec
 SESiIncomei1.000.000.000[1.000, 1.000]
Collegei.374.075.000[.233, .531]*
Insuredi.817.314.000[.487, 1.552]*
Employedi.466.085.000[.303, .641]*

i indexes participants (N = 365) and j indexes EMAs (N = 31,800); Est. = undstandardized estimate (probit); SD = posterior standard deviation; p = Bayesian one-tailed p-value; a = for positive values, the one-tailed p-value is the proportion of posterior distribution above 0; b = the 2.5 and 97.5 percentiles in the asymmetric posterior distribution, credibility intervals (CI) that do not include 0 noted with an asterisk (*); c = continuous latent variable for SES (M = 0, SD = 1).

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close