Table 1

Parameter settings for the DMR identification methods. Default settings are underlined and in bold font.

MethodImplementationInput ParametersStatistics for computing DMR P-valueDMR P-value label in output table
BumphunterR/BioC package bumphunter v1.20.0pickCutoffQ = (0.95, 0.99), maxGap = (200, 250, 500, 750, 1000), nullMethod ="permutation", B=10permutation distribution based on permuting sample labelsP-value area
Comb-pPython library comb-p v0.48--seed (0.001, 0.01, 0.05) --dist (200, 250, 500, 750, 1000)Stouffer–Liptak statisticz_p
DMRcateR/BioC package DMRcate v1.14.0lambda = (200, 250, 500, 750, 1000), C = (1,2,3,4,5)Stouffer’s methodStouffer
Probe LassoR/BioC package ChAMP v2.9.10method = “ProbeLasso”, adjPvalProbe = (0.001, 0.01, 0.05) meanLassoRadius = (375, 700, 1000) minDmrSep = (200, 250, 500, 750, 1000)Stouffer’s methoddmrP
MethodImplementationInput ParametersStatistics for computing DMR P-valueDMR P-value label in output table
BumphunterR/BioC package bumphunter v1.20.0pickCutoffQ = (0.95, 0.99), maxGap = (200, 250, 500, 750, 1000), nullMethod ="permutation", B=10permutation distribution based on permuting sample labelsP-value area
Comb-pPython library comb-p v0.48--seed (0.001, 0.01, 0.05) --dist (200, 250, 500, 750, 1000)Stouffer–Liptak statisticz_p
DMRcateR/BioC package DMRcate v1.14.0lambda = (200, 250, 500, 750, 1000), C = (1,2,3,4,5)Stouffer’s methodStouffer
Probe LassoR/BioC package ChAMP v2.9.10method = “ProbeLasso”, adjPvalProbe = (0.001, 0.01, 0.05) meanLassoRadius = (375, 700, 1000) minDmrSep = (200, 250, 500, 750, 1000)Stouffer’s methoddmrP
Table 1

Parameter settings for the DMR identification methods. Default settings are underlined and in bold font.

MethodImplementationInput ParametersStatistics for computing DMR P-valueDMR P-value label in output table
BumphunterR/BioC package bumphunter v1.20.0pickCutoffQ = (0.95, 0.99), maxGap = (200, 250, 500, 750, 1000), nullMethod ="permutation", B=10permutation distribution based on permuting sample labelsP-value area
Comb-pPython library comb-p v0.48--seed (0.001, 0.01, 0.05) --dist (200, 250, 500, 750, 1000)Stouffer–Liptak statisticz_p
DMRcateR/BioC package DMRcate v1.14.0lambda = (200, 250, 500, 750, 1000), C = (1,2,3,4,5)Stouffer’s methodStouffer
Probe LassoR/BioC package ChAMP v2.9.10method = “ProbeLasso”, adjPvalProbe = (0.001, 0.01, 0.05) meanLassoRadius = (375, 700, 1000) minDmrSep = (200, 250, 500, 750, 1000)Stouffer’s methoddmrP
MethodImplementationInput ParametersStatistics for computing DMR P-valueDMR P-value label in output table
BumphunterR/BioC package bumphunter v1.20.0pickCutoffQ = (0.95, 0.99), maxGap = (200, 250, 500, 750, 1000), nullMethod ="permutation", B=10permutation distribution based on permuting sample labelsP-value area
Comb-pPython library comb-p v0.48--seed (0.001, 0.01, 0.05) --dist (200, 250, 500, 750, 1000)Stouffer–Liptak statisticz_p
DMRcateR/BioC package DMRcate v1.14.0lambda = (200, 250, 500, 750, 1000), C = (1,2,3,4,5)Stouffer’s methodStouffer
Probe LassoR/BioC package ChAMP v2.9.10method = “ProbeLasso”, adjPvalProbe = (0.001, 0.01, 0.05) meanLassoRadius = (375, 700, 1000) minDmrSep = (200, 250, 500, 750, 1000)Stouffer’s methoddmrP
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close