Table 1.

Main parameters of the three runs in the Chronos++suite used in the present work. From the left- to right-hand columns define the presence of radiative cooling or star-forming particles, the critical gas number density n* to trigger star formation in the Kravtsov (2003) model, the time-scale for star formation t*, the thermal feedback efficiency, and the magnetic feedback efficiency (ϵSF and ϵSF, b) from star-forming regions; the efficiency of Bondi accretion αBondi in the Kim et al. (2011) model for SMBH; the thermal feedback efficiency and the magnetic feedback efficiency (ϵBH and ϵBH, b) from SMBH; the intensity of the initial magnetic field, B0; the presence of sub-grid dynamo amplification at run time; the ID of the run and some additional descriptive notes. All simulations evolved a |$85^3\, \rm Mpc^3$| volume using 10243 cells and DM particles, starting at redshift z = 38. The name convention of all runs is consistent with Vazza et al. (2017).

CoolingStarn*t*ϵSFϵSF, bαBondiϵBHϵBH, bB0DynamoIDDescription
 formation(1 cm-3)(Gyr)(G)
NoNo10−9NoBaselinePrimordial, uniform,
NoNo10−18|$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$|DYN5Low primordial, efficient dynamo
YesYes0.00011.510−80.01103 fix.0.050.0110−18CSFBH2Star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}{\rm yr})$|
CoolingStarn*t*ϵSFϵSF, bαBondiϵBHϵBH, bB0DynamoIDDescription
 formation(1 cm-3)(Gyr)(G)
NoNo10−9NoBaselinePrimordial, uniform,
NoNo10−18|$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$|DYN5Low primordial, efficient dynamo
YesYes0.00011.510−80.01103 fix.0.050.0110−18CSFBH2Star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}{\rm yr})$|
Table 1.

Main parameters of the three runs in the Chronos++suite used in the present work. From the left- to right-hand columns define the presence of radiative cooling or star-forming particles, the critical gas number density n* to trigger star formation in the Kravtsov (2003) model, the time-scale for star formation t*, the thermal feedback efficiency, and the magnetic feedback efficiency (ϵSF and ϵSF, b) from star-forming regions; the efficiency of Bondi accretion αBondi in the Kim et al. (2011) model for SMBH; the thermal feedback efficiency and the magnetic feedback efficiency (ϵBH and ϵBH, b) from SMBH; the intensity of the initial magnetic field, B0; the presence of sub-grid dynamo amplification at run time; the ID of the run and some additional descriptive notes. All simulations evolved a |$85^3\, \rm Mpc^3$| volume using 10243 cells and DM particles, starting at redshift z = 38. The name convention of all runs is consistent with Vazza et al. (2017).

CoolingStarn*t*ϵSFϵSF, bαBondiϵBHϵBH, bB0DynamoIDDescription
 formation(1 cm-3)(Gyr)(G)
NoNo10−9NoBaselinePrimordial, uniform,
NoNo10−18|$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$|DYN5Low primordial, efficient dynamo
YesYes0.00011.510−80.01103 fix.0.050.0110−18CSFBH2Star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}{\rm yr})$|
CoolingStarn*t*ϵSFϵSF, bαBondiϵBHϵBH, bB0DynamoIDDescription
 formation(1 cm-3)(Gyr)(G)
NoNo10−9NoBaselinePrimordial, uniform,
NoNo10−18|$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$|DYN5Low primordial, efficient dynamo
YesYes0.00011.510−80.01103 fix.0.050.0110−18CSFBH2Star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}{\rm yr})$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close