Model . | Training data set (no. of training . | Accuracy . | Precision . | Recall . | F1 score . | No. of missing . |
---|---|---|---|---|---|---|
. | samples) . | . | . | . | . | pulsars . |
PICS | FAST + HTRU + FALFA (13 632) | 0.9357 | 0.2649 | 0.9540 | 0.4146 | 15 |
PICS-ResNet | FAST + HTRU + FALFA (13 632) | 0.9332 | 0.2612 | 0.9816 | 0.4126 | 6 |
H-CCNN | FAST (1835) | 0.9634 | 0.3920 | 0.9632 | 0.5572 | 12 |
V-CCNN | FAST (1835) | 0.9173 | 0.2227 | 0.9877 | 0.3634 | 4 |
H-CCNN+V-CCNN | FAST (1835) | 0.9476 | 0.3110 | 0.9816 | 0.4723 | 6 |
Model . | Training data set (no. of training . | Accuracy . | Precision . | Recall . | F1 score . | No. of missing . |
---|---|---|---|---|---|---|
. | samples) . | . | . | . | . | pulsars . |
PICS | FAST + HTRU + FALFA (13 632) | 0.9357 | 0.2649 | 0.9540 | 0.4146 | 15 |
PICS-ResNet | FAST + HTRU + FALFA (13 632) | 0.9332 | 0.2612 | 0.9816 | 0.4126 | 6 |
H-CCNN | FAST (1835) | 0.9634 | 0.3920 | 0.9632 | 0.5572 | 12 |
V-CCNN | FAST (1835) | 0.9173 | 0.2227 | 0.9877 | 0.3634 | 4 |
H-CCNN+V-CCNN | FAST (1835) | 0.9476 | 0.3110 | 0.9816 | 0.4723 | 6 |
Notes. The first two models were trained by Guo et al. (2019). The final model, ‘H-CCNN+V-CCNN’, is the embedding model of H-CCNN and V-CCNN. The boldface digits indicate the best performance.
Model . | Training data set (no. of training . | Accuracy . | Precision . | Recall . | F1 score . | No. of missing . |
---|---|---|---|---|---|---|
. | samples) . | . | . | . | . | pulsars . |
PICS | FAST + HTRU + FALFA (13 632) | 0.9357 | 0.2649 | 0.9540 | 0.4146 | 15 |
PICS-ResNet | FAST + HTRU + FALFA (13 632) | 0.9332 | 0.2612 | 0.9816 | 0.4126 | 6 |
H-CCNN | FAST (1835) | 0.9634 | 0.3920 | 0.9632 | 0.5572 | 12 |
V-CCNN | FAST (1835) | 0.9173 | 0.2227 | 0.9877 | 0.3634 | 4 |
H-CCNN+V-CCNN | FAST (1835) | 0.9476 | 0.3110 | 0.9816 | 0.4723 | 6 |
Model . | Training data set (no. of training . | Accuracy . | Precision . | Recall . | F1 score . | No. of missing . |
---|---|---|---|---|---|---|
. | samples) . | . | . | . | . | pulsars . |
PICS | FAST + HTRU + FALFA (13 632) | 0.9357 | 0.2649 | 0.9540 | 0.4146 | 15 |
PICS-ResNet | FAST + HTRU + FALFA (13 632) | 0.9332 | 0.2612 | 0.9816 | 0.4126 | 6 |
H-CCNN | FAST (1835) | 0.9634 | 0.3920 | 0.9632 | 0.5572 | 12 |
V-CCNN | FAST (1835) | 0.9173 | 0.2227 | 0.9877 | 0.3634 | 4 |
H-CCNN+V-CCNN | FAST (1835) | 0.9476 | 0.3110 | 0.9816 | 0.4723 | 6 |
Notes. The first two models were trained by Guo et al. (2019). The final model, ‘H-CCNN+V-CCNN’, is the embedding model of H-CCNN and V-CCNN. The boldface digits indicate the best performance.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.