Table 4.

Summary of results: 1σ marginalized per cent errors on f from multipole expansion analyses performed in this work. The kmax used for P0 and P2 can be found in Table 1. For z = 0.5 TNS uses the hexadecapole up to |$k_{\rm max,4} = 0.129 \, h\, {\rm Mpc}^{-1}$| while in the EFTofLSS we have |$k_{\rm max,4} = k_{\rm max} = 0.245 \, h\, {\rm Mpc}^{-1}$|⁠. For z = 1, |$k_{\rm max,4} =0.05 \, h\, {\rm Mpc}^{-1}$| for TNS and |$k_{\rm max,4} =0.16 \, h\, {\rm Mpc}^{-1}$| for EFTofLSS. Bracketed quantities indicate the result using a |$10\%$| prior applied on the parameter set {b1, N} as well as σv for TNS. The Fisher: |$P_0+P_2+P_4|_{ \mathrm{restricted}}$| TNS case has been included here for completeness, but was calculated in Paper I.

TNS LorEFTofLSS
Analysisz = 0.5z = 1z = 0.5z = 1
MCMC: P0 + P2|$3.6\,\mathrm{ per}\,\mathrm{ cent}$||$3.0\,\mathrm{ per}\,\mathrm{ cent}$||$2.8\,\mathrm{ per}\,\mathrm{ cent}$||$2.0\,\mathrm{ per}\,\mathrm{ cent}$|
MCMC: P0 + P2 + P4|restricted|$3.2\,(3.5)\,\mathrm{ per}\,\mathrm{ cent}$||$2.6\,(2.5)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(2.1)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(1.7)\,\mathrm{ per}\,\mathrm{ cent}$|
Fisher: P0 + P2 + P4|restricted|$3.8\,(3.5)\,\mathrm{ per}\,\mathrm{ cent}$||$2.9\,(2.8)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(1.8)\,\mathrm{ per}\,\mathrm{ cent}$||$1.6\,(1.4)\,\mathrm{ per}\,\mathrm{ cent}$|
TNS LorEFTofLSS
Analysisz = 0.5z = 1z = 0.5z = 1
MCMC: P0 + P2|$3.6\,\mathrm{ per}\,\mathrm{ cent}$||$3.0\,\mathrm{ per}\,\mathrm{ cent}$||$2.8\,\mathrm{ per}\,\mathrm{ cent}$||$2.0\,\mathrm{ per}\,\mathrm{ cent}$|
MCMC: P0 + P2 + P4|restricted|$3.2\,(3.5)\,\mathrm{ per}\,\mathrm{ cent}$||$2.6\,(2.5)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(2.1)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(1.7)\,\mathrm{ per}\,\mathrm{ cent}$|
Fisher: P0 + P2 + P4|restricted|$3.8\,(3.5)\,\mathrm{ per}\,\mathrm{ cent}$||$2.9\,(2.8)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(1.8)\,\mathrm{ per}\,\mathrm{ cent}$||$1.6\,(1.4)\,\mathrm{ per}\,\mathrm{ cent}$|
Table 4.

Summary of results: 1σ marginalized per cent errors on f from multipole expansion analyses performed in this work. The kmax used for P0 and P2 can be found in Table 1. For z = 0.5 TNS uses the hexadecapole up to |$k_{\rm max,4} = 0.129 \, h\, {\rm Mpc}^{-1}$| while in the EFTofLSS we have |$k_{\rm max,4} = k_{\rm max} = 0.245 \, h\, {\rm Mpc}^{-1}$|⁠. For z = 1, |$k_{\rm max,4} =0.05 \, h\, {\rm Mpc}^{-1}$| for TNS and |$k_{\rm max,4} =0.16 \, h\, {\rm Mpc}^{-1}$| for EFTofLSS. Bracketed quantities indicate the result using a |$10\%$| prior applied on the parameter set {b1, N} as well as σv for TNS. The Fisher: |$P_0+P_2+P_4|_{ \mathrm{restricted}}$| TNS case has been included here for completeness, but was calculated in Paper I.

TNS LorEFTofLSS
Analysisz = 0.5z = 1z = 0.5z = 1
MCMC: P0 + P2|$3.6\,\mathrm{ per}\,\mathrm{ cent}$||$3.0\,\mathrm{ per}\,\mathrm{ cent}$||$2.8\,\mathrm{ per}\,\mathrm{ cent}$||$2.0\,\mathrm{ per}\,\mathrm{ cent}$|
MCMC: P0 + P2 + P4|restricted|$3.2\,(3.5)\,\mathrm{ per}\,\mathrm{ cent}$||$2.6\,(2.5)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(2.1)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(1.7)\,\mathrm{ per}\,\mathrm{ cent}$|
Fisher: P0 + P2 + P4|restricted|$3.8\,(3.5)\,\mathrm{ per}\,\mathrm{ cent}$||$2.9\,(2.8)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(1.8)\,\mathrm{ per}\,\mathrm{ cent}$||$1.6\,(1.4)\,\mathrm{ per}\,\mathrm{ cent}$|
TNS LorEFTofLSS
Analysisz = 0.5z = 1z = 0.5z = 1
MCMC: P0 + P2|$3.6\,\mathrm{ per}\,\mathrm{ cent}$||$3.0\,\mathrm{ per}\,\mathrm{ cent}$||$2.8\,\mathrm{ per}\,\mathrm{ cent}$||$2.0\,\mathrm{ per}\,\mathrm{ cent}$|
MCMC: P0 + P2 + P4|restricted|$3.2\,(3.5)\,\mathrm{ per}\,\mathrm{ cent}$||$2.6\,(2.5)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(2.1)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(1.7)\,\mathrm{ per}\,\mathrm{ cent}$|
Fisher: P0 + P2 + P4|restricted|$3.8\,(3.5)\,\mathrm{ per}\,\mathrm{ cent}$||$2.9\,(2.8)\,\mathrm{ per}\,\mathrm{ cent}$||$1.8\,(1.8)\,\mathrm{ per}\,\mathrm{ cent}$||$1.6\,(1.4)\,\mathrm{ per}\,\mathrm{ cent}$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close