Table B1.

Measured Sn and their error bars in the bins 0.2 < z < 0.4, 0.4 < z < 0.6, 0.6 < z < 0.8 and 0.8 < z < 1. The first column refers to the angular size of the square cells used to perform the measurements. The next columns display successively S3 and its error bars, S4 and its error bars and S5 and its error bars. The counts-in-cells method used to perform the measurements is described in Section 3.3. The way the four fields are combined and the corresponding error bars are computed is detailed in Section 3.4.

θS3|$\sigma _{S_{3}}$|S4|$\sigma _{S_{4}}$|S5|$\sigma _{S_{5}}$|
0.2 < z < 0.4
0.00119.344.84−8.923.96−15.57.99
0.00164.451.33−4.290.80−6.81.85
0.00274.721.2154.742.7−84.044.7
0.00434.900.9158.638.3625735
0.00704.390.5543.615.0468262
0.01183.730.3826.36.2216673.1
0.01933.620.2123.62.9115826.4
0.03173.670.1424.81.8320830.3
0.05163.710.2227.64.1231084.2
0.08493.590.3125.85.1127883.2
0.13923.300.4021.75.4421668.8
0.22733.060.4617.35.3313548.9
0.37292.990.6517.97.0113851.2
0.61053.020.8121.88.9619880.7
1.00012.810.6315.55.6075.753.5
0.4 < z < 0.6
0.00118.184.10100743589 70130 529
0.00166.272.4522810188233051
0.00274.461.0361.132.11157645
0.00434.120.5442.315.8656343
0.00704.010.2738.97.14579150
0.01184.030.1538.44.11611131
0.01934.100.0937.93.40557115
0.03174.170.1438.83.5054791.4
0.05164.090.1336.92.9348470.3
0.08493.720.1228.62.8929956.4
0.13923.300.1020.01.8614518.8
0.22733.150.1717.32.8188.528.2
0.37293.070.3513.15.85−10.141.4
0.61053.120.602.948.54−24943.0
1.00014.010.87−5.0011.4−595241
0.6 < z < 0.8
0.00117.323.4345523233 73713 985
0.00167.642.5322093.487102910
0.00275.301.0879.833.91832916
0.00434.860.7061.823.21151668
0.00704.640.5454.717.41025541
0.01184.620.4551.012.6910360
0.01934.600.4450.610.7885260
0.03174.400.4446.69.81769214
0.05164.050.4940.011.5620255
0.08493.580.4829.110.3373206
0.13923.130.4521.18.56203144
0.22732.670.3615.16.34106108
0.37292.130.419.876.3865.799
0.61051.060.433.413.2514153
1.0001−0.690.33−5.602.64221588
0.8 < z < 1.0
0.001111.03.75365136−819226
0.001611.53.1848314716 0113325
0.00276.962.0122310210 4154062
0.00435.541.5516184.787704397
0.00705.201.4113571.869703767
0.01185.011.1911756.455792893
0.01934.771.0296.042.037571829
0.03174.540.9390.540.236641865
0.05164.230.8579.937.732711836
0.08493.600.6247.521.71352792
0.13922.990.4424.910.5403249
0.22732.450.3413.95.5014290.5
0.37291.810.397.745.89131109
0.61050.990.47−1.928.71211225
1.0001−0.360.95−15.0217.0508575
θS3|$\sigma _{S_{3}}$|S4|$\sigma _{S_{4}}$|S5|$\sigma _{S_{5}}$|
0.2 < z < 0.4
0.00119.344.84−8.923.96−15.57.99
0.00164.451.33−4.290.80−6.81.85
0.00274.721.2154.742.7−84.044.7
0.00434.900.9158.638.3625735
0.00704.390.5543.615.0468262
0.01183.730.3826.36.2216673.1
0.01933.620.2123.62.9115826.4
0.03173.670.1424.81.8320830.3
0.05163.710.2227.64.1231084.2
0.08493.590.3125.85.1127883.2
0.13923.300.4021.75.4421668.8
0.22733.060.4617.35.3313548.9
0.37292.990.6517.97.0113851.2
0.61053.020.8121.88.9619880.7
1.00012.810.6315.55.6075.753.5
0.4 < z < 0.6
0.00118.184.10100743589 70130 529
0.00166.272.4522810188233051
0.00274.461.0361.132.11157645
0.00434.120.5442.315.8656343
0.00704.010.2738.97.14579150
0.01184.030.1538.44.11611131
0.01934.100.0937.93.40557115
0.03174.170.1438.83.5054791.4
0.05164.090.1336.92.9348470.3
0.08493.720.1228.62.8929956.4
0.13923.300.1020.01.8614518.8
0.22733.150.1717.32.8188.528.2
0.37293.070.3513.15.85−10.141.4
0.61053.120.602.948.54−24943.0
1.00014.010.87−5.0011.4−595241
0.6 < z < 0.8
0.00117.323.4345523233 73713 985
0.00167.642.5322093.487102910
0.00275.301.0879.833.91832916
0.00434.860.7061.823.21151668
0.00704.640.5454.717.41025541
0.01184.620.4551.012.6910360
0.01934.600.4450.610.7885260
0.03174.400.4446.69.81769214
0.05164.050.4940.011.5620255
0.08493.580.4829.110.3373206
0.13923.130.4521.18.56203144
0.22732.670.3615.16.34106108
0.37292.130.419.876.3865.799
0.61051.060.433.413.2514153
1.0001−0.690.33−5.602.64221588
0.8 < z < 1.0
0.001111.03.75365136−819226
0.001611.53.1848314716 0113325
0.00276.962.0122310210 4154062
0.00435.541.5516184.787704397
0.00705.201.4113571.869703767
0.01185.011.1911756.455792893
0.01934.771.0296.042.037571829
0.03174.540.9390.540.236641865
0.05164.230.8579.937.732711836
0.08493.600.6247.521.71352792
0.13922.990.4424.910.5403249
0.22732.450.3413.95.5014290.5
0.37291.810.397.745.89131109
0.61050.990.47−1.928.71211225
1.0001−0.360.95−15.0217.0508575
Table B1.

Measured Sn and their error bars in the bins 0.2 < z < 0.4, 0.4 < z < 0.6, 0.6 < z < 0.8 and 0.8 < z < 1. The first column refers to the angular size of the square cells used to perform the measurements. The next columns display successively S3 and its error bars, S4 and its error bars and S5 and its error bars. The counts-in-cells method used to perform the measurements is described in Section 3.3. The way the four fields are combined and the corresponding error bars are computed is detailed in Section 3.4.

θS3|$\sigma _{S_{3}}$|S4|$\sigma _{S_{4}}$|S5|$\sigma _{S_{5}}$|
0.2 < z < 0.4
0.00119.344.84−8.923.96−15.57.99
0.00164.451.33−4.290.80−6.81.85
0.00274.721.2154.742.7−84.044.7
0.00434.900.9158.638.3625735
0.00704.390.5543.615.0468262
0.01183.730.3826.36.2216673.1
0.01933.620.2123.62.9115826.4
0.03173.670.1424.81.8320830.3
0.05163.710.2227.64.1231084.2
0.08493.590.3125.85.1127883.2
0.13923.300.4021.75.4421668.8
0.22733.060.4617.35.3313548.9
0.37292.990.6517.97.0113851.2
0.61053.020.8121.88.9619880.7
1.00012.810.6315.55.6075.753.5
0.4 < z < 0.6
0.00118.184.10100743589 70130 529
0.00166.272.4522810188233051
0.00274.461.0361.132.11157645
0.00434.120.5442.315.8656343
0.00704.010.2738.97.14579150
0.01184.030.1538.44.11611131
0.01934.100.0937.93.40557115
0.03174.170.1438.83.5054791.4
0.05164.090.1336.92.9348470.3
0.08493.720.1228.62.8929956.4
0.13923.300.1020.01.8614518.8
0.22733.150.1717.32.8188.528.2
0.37293.070.3513.15.85−10.141.4
0.61053.120.602.948.54−24943.0
1.00014.010.87−5.0011.4−595241
0.6 < z < 0.8
0.00117.323.4345523233 73713 985
0.00167.642.5322093.487102910
0.00275.301.0879.833.91832916
0.00434.860.7061.823.21151668
0.00704.640.5454.717.41025541
0.01184.620.4551.012.6910360
0.01934.600.4450.610.7885260
0.03174.400.4446.69.81769214
0.05164.050.4940.011.5620255
0.08493.580.4829.110.3373206
0.13923.130.4521.18.56203144
0.22732.670.3615.16.34106108
0.37292.130.419.876.3865.799
0.61051.060.433.413.2514153
1.0001−0.690.33−5.602.64221588
0.8 < z < 1.0
0.001111.03.75365136−819226
0.001611.53.1848314716 0113325
0.00276.962.0122310210 4154062
0.00435.541.5516184.787704397
0.00705.201.4113571.869703767
0.01185.011.1911756.455792893
0.01934.771.0296.042.037571829
0.03174.540.9390.540.236641865
0.05164.230.8579.937.732711836
0.08493.600.6247.521.71352792
0.13922.990.4424.910.5403249
0.22732.450.3413.95.5014290.5
0.37291.810.397.745.89131109
0.61050.990.47−1.928.71211225
1.0001−0.360.95−15.0217.0508575
θS3|$\sigma _{S_{3}}$|S4|$\sigma _{S_{4}}$|S5|$\sigma _{S_{5}}$|
0.2 < z < 0.4
0.00119.344.84−8.923.96−15.57.99
0.00164.451.33−4.290.80−6.81.85
0.00274.721.2154.742.7−84.044.7
0.00434.900.9158.638.3625735
0.00704.390.5543.615.0468262
0.01183.730.3826.36.2216673.1
0.01933.620.2123.62.9115826.4
0.03173.670.1424.81.8320830.3
0.05163.710.2227.64.1231084.2
0.08493.590.3125.85.1127883.2
0.13923.300.4021.75.4421668.8
0.22733.060.4617.35.3313548.9
0.37292.990.6517.97.0113851.2
0.61053.020.8121.88.9619880.7
1.00012.810.6315.55.6075.753.5
0.4 < z < 0.6
0.00118.184.10100743589 70130 529
0.00166.272.4522810188233051
0.00274.461.0361.132.11157645
0.00434.120.5442.315.8656343
0.00704.010.2738.97.14579150
0.01184.030.1538.44.11611131
0.01934.100.0937.93.40557115
0.03174.170.1438.83.5054791.4
0.05164.090.1336.92.9348470.3
0.08493.720.1228.62.8929956.4
0.13923.300.1020.01.8614518.8
0.22733.150.1717.32.8188.528.2
0.37293.070.3513.15.85−10.141.4
0.61053.120.602.948.54−24943.0
1.00014.010.87−5.0011.4−595241
0.6 < z < 0.8
0.00117.323.4345523233 73713 985
0.00167.642.5322093.487102910
0.00275.301.0879.833.91832916
0.00434.860.7061.823.21151668
0.00704.640.5454.717.41025541
0.01184.620.4551.012.6910360
0.01934.600.4450.610.7885260
0.03174.400.4446.69.81769214
0.05164.050.4940.011.5620255
0.08493.580.4829.110.3373206
0.13923.130.4521.18.56203144
0.22732.670.3615.16.34106108
0.37292.130.419.876.3865.799
0.61051.060.433.413.2514153
1.0001−0.690.33−5.602.64221588
0.8 < z < 1.0
0.001111.03.75365136−819226
0.001611.53.1848314716 0113325
0.00276.962.0122310210 4154062
0.00435.541.5516184.787704397
0.00705.201.4113571.869703767
0.01185.011.1911756.455792893
0.01934.771.0296.042.037571829
0.03174.540.9390.540.236641865
0.05164.230.8579.937.732711836
0.08493.600.6247.521.71352792
0.13922.990.4424.910.5403249
0.22732.450.3413.95.5014290.5
0.37291.810.397.745.89131109
0.61050.990.47−1.928.71211225
1.0001−0.360.95−15.0217.0508575
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close