Table 5.

The performance of different ML classifiers. LC1 and LC2 are two ensemble classifiers used on LOTAAS 1 and LOTAAS 2, respectively (Tan et al. 2018). Bold type indicates the best performance on HTUR 2 and LOTAAS 1. aIndicates the best performance compared with PNCN and LC2.

Data setClassifierAccuracyRecallPrecisionG-meanF-scoreFPR
C4.50.9460.9040.6350.9260.7400.051
MLP0.9470.9130.6500.9310.7520.050
NB0.9370.8630.5790.9020.6920.057
HTRU 2SVM0.8710.9010.7230.9190.7890.031
gh-vfdt0.9780.8290.8990.9070.8620.008
KNN0.9780.8250.9300.9060.8750.006
PNCN0.9780.8310.9230.9080.8740.007
C4.50.9900.9480.4940.9690.6230.009
MLP0.9970.9790.7530.9880.8460.002
NB0.9960.9590.6730.9770.7820.004
SVM0.9990.9010.9660.9490.9320.001
LOTAAS 1gh-vfdt0.9980.7890.8750.8880.8300.001
KNN0.9990.9470.9780.9730.9610.0003
PNCN0.999a0.9560.9740.9770.9640.0003a
LC10.9680.9620.9610.9670.9610.028
LOTAAS 2LC20.9920.987a0.993a0.991a0.990a0.005
Data setClassifierAccuracyRecallPrecisionG-meanF-scoreFPR
C4.50.9460.9040.6350.9260.7400.051
MLP0.9470.9130.6500.9310.7520.050
NB0.9370.8630.5790.9020.6920.057
HTRU 2SVM0.8710.9010.7230.9190.7890.031
gh-vfdt0.9780.8290.8990.9070.8620.008
KNN0.9780.8250.9300.9060.8750.006
PNCN0.9780.8310.9230.9080.8740.007
C4.50.9900.9480.4940.9690.6230.009
MLP0.9970.9790.7530.9880.8460.002
NB0.9960.9590.6730.9770.7820.004
SVM0.9990.9010.9660.9490.9320.001
LOTAAS 1gh-vfdt0.9980.7890.8750.8880.8300.001
KNN0.9990.9470.9780.9730.9610.0003
PNCN0.999a0.9560.9740.9770.9640.0003a
LC10.9680.9620.9610.9670.9610.028
LOTAAS 2LC20.9920.987a0.993a0.991a0.990a0.005
Table 5.

The performance of different ML classifiers. LC1 and LC2 are two ensemble classifiers used on LOTAAS 1 and LOTAAS 2, respectively (Tan et al. 2018). Bold type indicates the best performance on HTUR 2 and LOTAAS 1. aIndicates the best performance compared with PNCN and LC2.

Data setClassifierAccuracyRecallPrecisionG-meanF-scoreFPR
C4.50.9460.9040.6350.9260.7400.051
MLP0.9470.9130.6500.9310.7520.050
NB0.9370.8630.5790.9020.6920.057
HTRU 2SVM0.8710.9010.7230.9190.7890.031
gh-vfdt0.9780.8290.8990.9070.8620.008
KNN0.9780.8250.9300.9060.8750.006
PNCN0.9780.8310.9230.9080.8740.007
C4.50.9900.9480.4940.9690.6230.009
MLP0.9970.9790.7530.9880.8460.002
NB0.9960.9590.6730.9770.7820.004
SVM0.9990.9010.9660.9490.9320.001
LOTAAS 1gh-vfdt0.9980.7890.8750.8880.8300.001
KNN0.9990.9470.9780.9730.9610.0003
PNCN0.999a0.9560.9740.9770.9640.0003a
LC10.9680.9620.9610.9670.9610.028
LOTAAS 2LC20.9920.987a0.993a0.991a0.990a0.005
Data setClassifierAccuracyRecallPrecisionG-meanF-scoreFPR
C4.50.9460.9040.6350.9260.7400.051
MLP0.9470.9130.6500.9310.7520.050
NB0.9370.8630.5790.9020.6920.057
HTRU 2SVM0.8710.9010.7230.9190.7890.031
gh-vfdt0.9780.8290.8990.9070.8620.008
KNN0.9780.8250.9300.9060.8750.006
PNCN0.9780.8310.9230.9080.8740.007
C4.50.9900.9480.4940.9690.6230.009
MLP0.9970.9790.7530.9880.8460.002
NB0.9960.9590.6730.9770.7820.004
SVM0.9990.9010.9660.9490.9320.001
LOTAAS 1gh-vfdt0.9980.7890.8750.8880.8300.001
KNN0.9990.9470.9780.9730.9610.0003
PNCN0.999a0.9560.9740.9770.9640.0003a
LC10.9680.9620.9610.9670.9610.028
LOTAAS 2LC20.9920.987a0.993a0.991a0.990a0.005
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close