The performance of different ML classifiers. LC1 and LC2 are two ensemble classifiers used on LOTAAS 1 and LOTAAS 2, respectively (Tan et al. 2018). Bold type indicates the best performance on HTUR 2 and LOTAAS 1. aIndicates the best performance compared with PNCN and LC2.
Data set . | Classifier . | Accuracy . | Recall . | Precision . | G-mean . | F-score . | FPR . |
---|---|---|---|---|---|---|---|
C4.5 | 0.946 | 0.904 | 0.635 | 0.926 | 0.740 | 0.051 | |
MLP | 0.947 | 0.913 | 0.650 | 0.931 | 0.752 | 0.050 | |
NB | 0.937 | 0.863 | 0.579 | 0.902 | 0.692 | 0.057 | |
HTRU 2 | SVM | 0.871 | 0.901 | 0.723 | 0.919 | 0.789 | 0.031 |
gh-vfdt | 0.978 | 0.829 | 0.899 | 0.907 | 0.862 | 0.008 | |
KNN | 0.978 | 0.825 | 0.930 | 0.906 | 0.875 | 0.006 | |
PNCN | 0.978 | 0.831 | 0.923 | 0.908 | 0.874 | 0.007 | |
C4.5 | 0.990 | 0.948 | 0.494 | 0.969 | 0.623 | 0.009 | |
MLP | 0.997 | 0.979 | 0.753 | 0.988 | 0.846 | 0.002 | |
NB | 0.996 | 0.959 | 0.673 | 0.977 | 0.782 | 0.004 | |
SVM | 0.999 | 0.901 | 0.966 | 0.949 | 0.932 | 0.001 | |
LOTAAS 1 | gh-vfdt | 0.998 | 0.789 | 0.875 | 0.888 | 0.830 | 0.001 |
KNN | 0.999 | 0.947 | 0.978 | 0.973 | 0.961 | 0.0003 | |
PNCN | 0.999a | 0.956 | 0.974 | 0.977 | 0.964 | 0.0003a | |
LC1 | 0.968 | 0.962 | 0.961 | 0.967 | 0.961 | 0.028 | |
LOTAAS 2 | LC2 | 0.992 | 0.987a | 0.993a | 0.991a | 0.990a | 0.005 |
Data set . | Classifier . | Accuracy . | Recall . | Precision . | G-mean . | F-score . | FPR . |
---|---|---|---|---|---|---|---|
C4.5 | 0.946 | 0.904 | 0.635 | 0.926 | 0.740 | 0.051 | |
MLP | 0.947 | 0.913 | 0.650 | 0.931 | 0.752 | 0.050 | |
NB | 0.937 | 0.863 | 0.579 | 0.902 | 0.692 | 0.057 | |
HTRU 2 | SVM | 0.871 | 0.901 | 0.723 | 0.919 | 0.789 | 0.031 |
gh-vfdt | 0.978 | 0.829 | 0.899 | 0.907 | 0.862 | 0.008 | |
KNN | 0.978 | 0.825 | 0.930 | 0.906 | 0.875 | 0.006 | |
PNCN | 0.978 | 0.831 | 0.923 | 0.908 | 0.874 | 0.007 | |
C4.5 | 0.990 | 0.948 | 0.494 | 0.969 | 0.623 | 0.009 | |
MLP | 0.997 | 0.979 | 0.753 | 0.988 | 0.846 | 0.002 | |
NB | 0.996 | 0.959 | 0.673 | 0.977 | 0.782 | 0.004 | |
SVM | 0.999 | 0.901 | 0.966 | 0.949 | 0.932 | 0.001 | |
LOTAAS 1 | gh-vfdt | 0.998 | 0.789 | 0.875 | 0.888 | 0.830 | 0.001 |
KNN | 0.999 | 0.947 | 0.978 | 0.973 | 0.961 | 0.0003 | |
PNCN | 0.999a | 0.956 | 0.974 | 0.977 | 0.964 | 0.0003a | |
LC1 | 0.968 | 0.962 | 0.961 | 0.967 | 0.961 | 0.028 | |
LOTAAS 2 | LC2 | 0.992 | 0.987a | 0.993a | 0.991a | 0.990a | 0.005 |
The performance of different ML classifiers. LC1 and LC2 are two ensemble classifiers used on LOTAAS 1 and LOTAAS 2, respectively (Tan et al. 2018). Bold type indicates the best performance on HTUR 2 and LOTAAS 1. aIndicates the best performance compared with PNCN and LC2.
Data set . | Classifier . | Accuracy . | Recall . | Precision . | G-mean . | F-score . | FPR . |
---|---|---|---|---|---|---|---|
C4.5 | 0.946 | 0.904 | 0.635 | 0.926 | 0.740 | 0.051 | |
MLP | 0.947 | 0.913 | 0.650 | 0.931 | 0.752 | 0.050 | |
NB | 0.937 | 0.863 | 0.579 | 0.902 | 0.692 | 0.057 | |
HTRU 2 | SVM | 0.871 | 0.901 | 0.723 | 0.919 | 0.789 | 0.031 |
gh-vfdt | 0.978 | 0.829 | 0.899 | 0.907 | 0.862 | 0.008 | |
KNN | 0.978 | 0.825 | 0.930 | 0.906 | 0.875 | 0.006 | |
PNCN | 0.978 | 0.831 | 0.923 | 0.908 | 0.874 | 0.007 | |
C4.5 | 0.990 | 0.948 | 0.494 | 0.969 | 0.623 | 0.009 | |
MLP | 0.997 | 0.979 | 0.753 | 0.988 | 0.846 | 0.002 | |
NB | 0.996 | 0.959 | 0.673 | 0.977 | 0.782 | 0.004 | |
SVM | 0.999 | 0.901 | 0.966 | 0.949 | 0.932 | 0.001 | |
LOTAAS 1 | gh-vfdt | 0.998 | 0.789 | 0.875 | 0.888 | 0.830 | 0.001 |
KNN | 0.999 | 0.947 | 0.978 | 0.973 | 0.961 | 0.0003 | |
PNCN | 0.999a | 0.956 | 0.974 | 0.977 | 0.964 | 0.0003a | |
LC1 | 0.968 | 0.962 | 0.961 | 0.967 | 0.961 | 0.028 | |
LOTAAS 2 | LC2 | 0.992 | 0.987a | 0.993a | 0.991a | 0.990a | 0.005 |
Data set . | Classifier . | Accuracy . | Recall . | Precision . | G-mean . | F-score . | FPR . |
---|---|---|---|---|---|---|---|
C4.5 | 0.946 | 0.904 | 0.635 | 0.926 | 0.740 | 0.051 | |
MLP | 0.947 | 0.913 | 0.650 | 0.931 | 0.752 | 0.050 | |
NB | 0.937 | 0.863 | 0.579 | 0.902 | 0.692 | 0.057 | |
HTRU 2 | SVM | 0.871 | 0.901 | 0.723 | 0.919 | 0.789 | 0.031 |
gh-vfdt | 0.978 | 0.829 | 0.899 | 0.907 | 0.862 | 0.008 | |
KNN | 0.978 | 0.825 | 0.930 | 0.906 | 0.875 | 0.006 | |
PNCN | 0.978 | 0.831 | 0.923 | 0.908 | 0.874 | 0.007 | |
C4.5 | 0.990 | 0.948 | 0.494 | 0.969 | 0.623 | 0.009 | |
MLP | 0.997 | 0.979 | 0.753 | 0.988 | 0.846 | 0.002 | |
NB | 0.996 | 0.959 | 0.673 | 0.977 | 0.782 | 0.004 | |
SVM | 0.999 | 0.901 | 0.966 | 0.949 | 0.932 | 0.001 | |
LOTAAS 1 | gh-vfdt | 0.998 | 0.789 | 0.875 | 0.888 | 0.830 | 0.001 |
KNN | 0.999 | 0.947 | 0.978 | 0.973 | 0.961 | 0.0003 | |
PNCN | 0.999a | 0.956 | 0.974 | 0.977 | 0.964 | 0.0003a | |
LC1 | 0.968 | 0.962 | 0.961 | 0.967 | 0.961 | 0.028 | |
LOTAAS 2 | LC2 | 0.992 | 0.987a | 0.993a | 0.991a | 0.990a | 0.005 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.