Table 3.

Relevant parameters of the simulations with AGN feedback.

LabelAGN|$\dot{M}_{\rm BH}$||$\mathcal {L}_{\rm AM}$|Energy|$M_{\rm BH,seed}$|MC
|$\frac{C_{\rm visc}}{2 \, \pi }$|coupling(M)(pc)
noAGN–reference
fiducial–hcAL–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold1|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–hotHot + |$\mathcal {A}_{\rm h}=1$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 0$|
hcA–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 0.5$|
hcA–coldHot + |$\mathcal {A}_{\rm h}=0$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 1$|
hcAL2–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold102|$\mathcal {A}_{\rm c} = 0.5$|
hcAL3–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold103|$\mathcal {A}_{\rm c} = 0.5$|
ocA–bothCold|$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
|$\mathcal {A}_{\rm c} = 0.5$|
ocAL–bothCold|$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
1|$\mathcal {A}_{\rm c} = 0.5$|
hcA–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcAL2–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold102|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–cf–20pcHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 10520
cold|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcAL–cf–20pcHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 10520
cold1|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–both–S0.5xHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,5.5 × 104
cold|$\mathcal {A}_{\rm c} = 0.5$|
hcA–both–S2xHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,2.7 × 105
cold|$\mathcal {A}_{\rm c} = 0.5$|
ocA–both–S0.5xCold|$\mathcal {A}_{\rm h}=0.5$|⁠,5.5 × 104
|$\mathcal {A}_{\rm c} = 0.5$|
ocA–both–S2xCold|$\mathcal {A}_{\rm h}=0.5$|⁠,2.7 × 105
|$\mathcal {A}_{\rm c} = 0.5$|
LabelAGN|$\dot{M}_{\rm BH}$||$\mathcal {L}_{\rm AM}$|Energy|$M_{\rm BH,seed}$|MC
|$\frac{C_{\rm visc}}{2 \, \pi }$|coupling(M)(pc)
noAGN–reference
fiducial–hcAL–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold1|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–hotHot + |$\mathcal {A}_{\rm h}=1$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 0$|
hcA–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 0.5$|
hcA–coldHot + |$\mathcal {A}_{\rm h}=0$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 1$|
hcAL2–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold102|$\mathcal {A}_{\rm c} = 0.5$|
hcAL3–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold103|$\mathcal {A}_{\rm c} = 0.5$|
ocA–bothCold|$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
|$\mathcal {A}_{\rm c} = 0.5$|
ocAL–bothCold|$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
1|$\mathcal {A}_{\rm c} = 0.5$|
hcA–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcAL2–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold102|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–cf–20pcHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 10520
cold|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcAL–cf–20pcHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 10520
cold1|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–both–S0.5xHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,5.5 × 104
cold|$\mathcal {A}_{\rm c} = 0.5$|
hcA–both–S2xHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,2.7 × 105
cold|$\mathcal {A}_{\rm c} = 0.5$|
ocA–both–S0.5xCold|$\mathcal {A}_{\rm h}=0.5$|⁠,5.5 × 104
|$\mathcal {A}_{\rm c} = 0.5$|
ocA–both–S2xCold|$\mathcal {A}_{\rm h}=0.5$|⁠,2.7 × 105
|$\mathcal {A}_{\rm c} = 0.5$|

Note. Column 1: simulation label. Column 2: AGN feedback: included or not. Column 3: hot and/or cold gas accretion. Column 4: angular momentum limiter: included or not. Column 5: AGN feedback energy coupling to the multiphase ISM. Column 6: BH seed mass. Column 7: size of cold clumps in molecular clouds. Other parameters as in Table 2.

Table 3.

Relevant parameters of the simulations with AGN feedback.

LabelAGN|$\dot{M}_{\rm BH}$||$\mathcal {L}_{\rm AM}$|Energy|$M_{\rm BH,seed}$|MC
|$\frac{C_{\rm visc}}{2 \, \pi }$|coupling(M)(pc)
noAGN–reference
fiducial–hcAL–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold1|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–hotHot + |$\mathcal {A}_{\rm h}=1$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 0$|
hcA–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 0.5$|
hcA–coldHot + |$\mathcal {A}_{\rm h}=0$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 1$|
hcAL2–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold102|$\mathcal {A}_{\rm c} = 0.5$|
hcAL3–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold103|$\mathcal {A}_{\rm c} = 0.5$|
ocA–bothCold|$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
|$\mathcal {A}_{\rm c} = 0.5$|
ocAL–bothCold|$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
1|$\mathcal {A}_{\rm c} = 0.5$|
hcA–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcAL2–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold102|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–cf–20pcHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 10520
cold|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcAL–cf–20pcHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 10520
cold1|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–both–S0.5xHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,5.5 × 104
cold|$\mathcal {A}_{\rm c} = 0.5$|
hcA–both–S2xHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,2.7 × 105
cold|$\mathcal {A}_{\rm c} = 0.5$|
ocA–both–S0.5xCold|$\mathcal {A}_{\rm h}=0.5$|⁠,5.5 × 104
|$\mathcal {A}_{\rm c} = 0.5$|
ocA–both–S2xCold|$\mathcal {A}_{\rm h}=0.5$|⁠,2.7 × 105
|$\mathcal {A}_{\rm c} = 0.5$|
LabelAGN|$\dot{M}_{\rm BH}$||$\mathcal {L}_{\rm AM}$|Energy|$M_{\rm BH,seed}$|MC
|$\frac{C_{\rm visc}}{2 \, \pi }$|coupling(M)(pc)
noAGN–reference
fiducial–hcAL–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold1|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–hotHot + |$\mathcal {A}_{\rm h}=1$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 0$|
hcA–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 0.5$|
hcA–coldHot + |$\mathcal {A}_{\rm h}=0$|⁠,1.1 × 105
cold|$\mathcal {A}_{\rm c} = 1$|
hcAL2–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold102|$\mathcal {A}_{\rm c} = 0.5$|
hcAL3–bothHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
cold103|$\mathcal {A}_{\rm c} = 0.5$|
ocA–bothCold|$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
|$\mathcal {A}_{\rm c} = 0.5$|
ocAL–bothCold|$\mathcal {A}_{\rm h}=0.5$|⁠,1.1 × 105
1|$\mathcal {A}_{\rm c} = 0.5$|
hcA–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcAL2–cfHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 1051
cold102|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–cf–20pcHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 10520
cold|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcAL–cf–20pcHot + |$\mathcal {A}_{\rm h}= \mathcal {C}_{\rm h}$|⁠,1.1 × 10520
cold1|$\mathcal {A}_{\rm c} = \mathcal {C}_{\rm c}$|
hcA–both–S0.5xHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,5.5 × 104
cold|$\mathcal {A}_{\rm c} = 0.5$|
hcA–both–S2xHot + |$\mathcal {A}_{\rm h}=0.5$|⁠,2.7 × 105
cold|$\mathcal {A}_{\rm c} = 0.5$|
ocA–both–S0.5xCold|$\mathcal {A}_{\rm h}=0.5$|⁠,5.5 × 104
|$\mathcal {A}_{\rm c} = 0.5$|
ocA–both–S2xCold|$\mathcal {A}_{\rm h}=0.5$|⁠,2.7 × 105
|$\mathcal {A}_{\rm c} = 0.5$|

Note. Column 1: simulation label. Column 2: AGN feedback: included or not. Column 3: hot and/or cold gas accretion. Column 4: angular momentum limiter: included or not. Column 5: AGN feedback energy coupling to the multiphase ISM. Column 6: BH seed mass. Column 7: size of cold clumps in molecular clouds. Other parameters as in Table 2.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close