Table A1.

Architecture for our autoencoder, featuring both encoder and decoder subnets. The decoder is a direct reflection of the encoder’s structure.

LayerLayer typeUnits/number of filtersSizePaddingStride
EncoderInputInput(64,64)
Conv1Convolutional8(3,3)11
ReLUActivation
Conv2Convolutional8(3,3)11
ReLUActivation
MaxPoolMax-pooling(2,2)1
Conv3Convolutional16(3,3)11
ReLUActivation
Conv4Convolutional16(3,3)11
ReLUActivation
MaxPoolMax-pooling(2,2)1
LinearFully-connected3
DecoderLinearFully-connected3
UpPartial inverse max-pool –(2,2)1
ReLUActivation
Trans1Transposed Convolution16(3,3)11
ReLUActivation –
Trans2Transposed Convolution16(3,3)11
UpPartial inverse max-pool –(2,2)1
ReLUActivation
Trans3Transposed Convolution8(3,3)11
ReLUActivation
Trans4Transposed Convolution8(3,3)11
OuputOutput –(64,64)
LayerLayer typeUnits/number of filtersSizePaddingStride
EncoderInputInput(64,64)
Conv1Convolutional8(3,3)11
ReLUActivation
Conv2Convolutional8(3,3)11
ReLUActivation
MaxPoolMax-pooling(2,2)1
Conv3Convolutional16(3,3)11
ReLUActivation
Conv4Convolutional16(3,3)11
ReLUActivation
MaxPoolMax-pooling(2,2)1
LinearFully-connected3
DecoderLinearFully-connected3
UpPartial inverse max-pool –(2,2)1
ReLUActivation
Trans1Transposed Convolution16(3,3)11
ReLUActivation –
Trans2Transposed Convolution16(3,3)11
UpPartial inverse max-pool –(2,2)1
ReLUActivation
Trans3Transposed Convolution8(3,3)11
ReLUActivation
Trans4Transposed Convolution8(3,3)11
OuputOutput –(64,64)
Table A1.

Architecture for our autoencoder, featuring both encoder and decoder subnets. The decoder is a direct reflection of the encoder’s structure.

LayerLayer typeUnits/number of filtersSizePaddingStride
EncoderInputInput(64,64)
Conv1Convolutional8(3,3)11
ReLUActivation
Conv2Convolutional8(3,3)11
ReLUActivation
MaxPoolMax-pooling(2,2)1
Conv3Convolutional16(3,3)11
ReLUActivation
Conv4Convolutional16(3,3)11
ReLUActivation
MaxPoolMax-pooling(2,2)1
LinearFully-connected3
DecoderLinearFully-connected3
UpPartial inverse max-pool –(2,2)1
ReLUActivation
Trans1Transposed Convolution16(3,3)11
ReLUActivation –
Trans2Transposed Convolution16(3,3)11
UpPartial inverse max-pool –(2,2)1
ReLUActivation
Trans3Transposed Convolution8(3,3)11
ReLUActivation
Trans4Transposed Convolution8(3,3)11
OuputOutput –(64,64)
LayerLayer typeUnits/number of filtersSizePaddingStride
EncoderInputInput(64,64)
Conv1Convolutional8(3,3)11
ReLUActivation
Conv2Convolutional8(3,3)11
ReLUActivation
MaxPoolMax-pooling(2,2)1
Conv3Convolutional16(3,3)11
ReLUActivation
Conv4Convolutional16(3,3)11
ReLUActivation
MaxPoolMax-pooling(2,2)1
LinearFully-connected3
DecoderLinearFully-connected3
UpPartial inverse max-pool –(2,2)1
ReLUActivation
Trans1Transposed Convolution16(3,3)11
ReLUActivation –
Trans2Transposed Convolution16(3,3)11
UpPartial inverse max-pool –(2,2)1
ReLUActivation
Trans3Transposed Convolution8(3,3)11
ReLUActivation
Trans4Transposed Convolution8(3,3)11
OuputOutput –(64,64)
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close