We summarize the conditions under which the additional massless states appear. The cosmological constant is exponentially suppressed when the gauge group is enhanced to |$SO(14) \times SO(18)$|.
Conditions . | |$\tilde{\tau}_1=n_1/\sqrt{2}~$| (|$n_1\in\boldsymbol{Z}$|) . | |$\tilde{\tau}_1=n_2/\sqrt{2}~$| (|$n_2\in\boldsymbol{Z}+1/2$|) . |
---|---|---|
Gauge group | |$SO(16)\times SO(16)$| | |$SO(14) \times SO(18)$| |
|$N_F-N_B$| | positive | zero |
Conditions . | |$\tilde{\tau}_1=n_1/\sqrt{2}~$| (|$n_1\in\boldsymbol{Z}$|) . | |$\tilde{\tau}_1=n_2/\sqrt{2}~$| (|$n_2\in\boldsymbol{Z}+1/2$|) . |
---|---|---|
Gauge group | |$SO(16)\times SO(16)$| | |$SO(14) \times SO(18)$| |
|$N_F-N_B$| | positive | zero |
We summarize the conditions under which the additional massless states appear. The cosmological constant is exponentially suppressed when the gauge group is enhanced to |$SO(14) \times SO(18)$|.
Conditions . | |$\tilde{\tau}_1=n_1/\sqrt{2}~$| (|$n_1\in\boldsymbol{Z}$|) . | |$\tilde{\tau}_1=n_2/\sqrt{2}~$| (|$n_2\in\boldsymbol{Z}+1/2$|) . |
---|---|---|
Gauge group | |$SO(16)\times SO(16)$| | |$SO(14) \times SO(18)$| |
|$N_F-N_B$| | positive | zero |
Conditions . | |$\tilde{\tau}_1=n_1/\sqrt{2}~$| (|$n_1\in\boldsymbol{Z}$|) . | |$\tilde{\tau}_1=n_2/\sqrt{2}~$| (|$n_2\in\boldsymbol{Z}+1/2$|) . |
---|---|---|
Gauge group | |$SO(16)\times SO(16)$| | |$SO(14) \times SO(18)$| |
|$N_F-N_B$| | positive | zero |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.