Table 1.

We summarize the conditions under which the additional massless states appear. The cosmological constant is exponentially suppressed when the gauge group is enhanced to |$SO(14) \times SO(18)$|⁠.

Conditions|$\tilde{\tau}_1=n_1/\sqrt{2}~$| (⁠|$n_1\in\boldsymbol{Z}$|⁠)|$\tilde{\tau}_1=n_2/\sqrt{2}~$| (⁠|$n_2\in\boldsymbol{Z}+1/2$|⁠)
Gauge group|$SO(16)\times SO(16)$||$SO(14) \times SO(18)$|
|$N_F-N_B$|positivezero
Conditions|$\tilde{\tau}_1=n_1/\sqrt{2}~$| (⁠|$n_1\in\boldsymbol{Z}$|⁠)|$\tilde{\tau}_1=n_2/\sqrt{2}~$| (⁠|$n_2\in\boldsymbol{Z}+1/2$|⁠)
Gauge group|$SO(16)\times SO(16)$||$SO(14) \times SO(18)$|
|$N_F-N_B$|positivezero
Table 1.

We summarize the conditions under which the additional massless states appear. The cosmological constant is exponentially suppressed when the gauge group is enhanced to |$SO(14) \times SO(18)$|⁠.

Conditions|$\tilde{\tau}_1=n_1/\sqrt{2}~$| (⁠|$n_1\in\boldsymbol{Z}$|⁠)|$\tilde{\tau}_1=n_2/\sqrt{2}~$| (⁠|$n_2\in\boldsymbol{Z}+1/2$|⁠)
Gauge group|$SO(16)\times SO(16)$||$SO(14) \times SO(18)$|
|$N_F-N_B$|positivezero
Conditions|$\tilde{\tau}_1=n_1/\sqrt{2}~$| (⁠|$n_1\in\boldsymbol{Z}$|⁠)|$\tilde{\tau}_1=n_2/\sqrt{2}~$| (⁠|$n_2\in\boldsymbol{Z}+1/2$|⁠)
Gauge group|$SO(16)\times SO(16)$||$SO(14) \times SO(18)$|
|$N_F-N_B$|positivezero
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close